
RDF-GL: A SPARQL-Based Graphical
Query Language for RDF

Frederik Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

1 Introduction

In an era of ever-increasing information needs, the ability to query large
databases quickly and efficiently has come to play a major part. For a large
share, this growing need is addressed by tools and languages aimed at per-
forming complex queries on distributed data. However, the intuitiveness of
designing such complex queries has only been addressed to a limited extent,
making such tools available solely for technical users.

The realm of such tools, aimed at the intuitiveness of query design, though
rather limited, presents some interesting applications. Examples of interfaces
aimed at the non-technical user include EROS [19] and SPARQLViz [4]. Ad-
ditionally, several graphical query languages (GQL) enable users to create
queries only by arranging and connecting symbols on a virtual canvas. There-
fore, complete knowledge of a normal query language is not necessary, as
GQL’s are mainly focused on intuitiveness of use.

Next to intuitive queries, the representation of knowledge is gaining impor-
tance, especially in the context of Web-based applications. New standards are
being developed for this purpose under a common denominator - the Semantic
Web [3]. One of the state-of-the-art languages put forward by this initiative is
the Resource Description Framework (RDF) [5]. The language enables repre-
sentations centered around the meaning of data, rather than the presentation
hereof, and allows the inference of implicit knowledge from explicitly modeled
data. The state-of-the-art query language for RDF is SPARQL [14].

Graphical query languages have already been developed for different types
of relational representations, but no SPARQL-based GQL is available yet for
querying RDF models. Our main focus is to propose one such GQL for RDF,

Econometric Institute, Erasmus University Rotterdam
P.O. Box 1738, 3000 DR Rotterdam, the Netherlands
{fhogenboom, milea, frasincar, kaymak}@ese.eur.nl

1

2 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

based on SPARQL. For this purpose we introduce RDF-GL, our graphical
query language for RDF. Additionally, we present SPARQLinG, an applica-
tion aimed at the design of graphical RDF-GL queries.

After discussing approaches related to our current goal in Sect. 2, we move
on to presenting our main contribution, the SPARQL-based graphical query
language for RDF, RDF-GL, in Sect. 3. The application developed for de-
signing RDF-GL queries, SPARQLinG, is presented in Sect. 4. We conclude
in Sect. 5.

2 Related Work

This section is aimed at providing an overview of current research efforts
related to graphical query languages. Although none of the presented ap-
proaches is built around RDF and SPARQL simultaneously, we deem some
of the ideas presented relevant for the current goals, as outlined in the follow-
ing sections. A summarizing overview of the main features of the presented
graphical query languages is provided in Table 1. The four attributes consid-
ered in this overview consist of whether the considered approach i) is a true
graphical query language, ii) shows a graphical user interface, iii) the query
language on which the tool is based, and iv) the data language for which it
is intended.

Table 1 GQL features summary.

GQL GUI Query language Data language

DERI yes no – RDF
XML-GL yes no – XML
GLOO yes no nRQL OWL ontologies
EROS no yes RQL RDFS
SPARQLViz no yes SPARQL RDFS
GRQL no yes RQL RDFS
SEWASIE yes∗ yes – Unknown
∗ Queries cannot be drawn by hand, but are generated through a

visual interface to the ontology.

An approach aimed at the graphical representation of RDF queries, de-
veloped by the Digital Enterprise Research Institute (DERI) at the National
University of Ireland, is presented in [11]. The DERI graphical query lan-
guage for RDF is built around facets - filter conditions over RDF graphs.
The developed graphical language addresses however only a limited set of
RDF queries.

Figure 1 presents a simple query, consisting of two facets, as enabled by the
RDF graphical query language introduced in [11]. The purpose of this query
consists of retrieving resources that have the keyword “RDF” in their title
and address the subject of “metadata models”. It should further be noted

RDF-GL: A SPARQL-Based Graphical Query Language for RDF 3

that the output of DERI RDF GQL queries consists of regular RDF triples,
which may serve as input to other queries, thus providing closure for the
proposed graphical query language.

Fig. 1 RDF GQL graphical query example [11].

Although the language presented in [11] does not provide semantics for
the introduced graphical constructs, the graphical queries may always be
translated to N3 [2] query syntax. For the example query depicted in Fig. 1,
the translation is shown in Fig. 2.

<> q1:select {
?subject1 ?p ?o .

}; q1:where {
?subject1 dc:title ?keyword .
?keyword yars:keyword ‘‘RDF’’ .
?subject1 dc:subject ‘‘Metadata models’’ .
?subject1 ?p ?o .

} .

Fig. 2 The example query in N3 query syntax.

XML-GL [8] is a graphical language for querying XML documents. The
Graphical Data Model (GDM) introduced by the language addresses objects,
properties, and relationships, represented as rectangles, circles, and arcs, re-
spectively. Based hereon, XML-GL queries are then defined as consisting of
four parts: i) the extract part, ii) the match part, iii) the clip part, iv) the
construct part. Upon identifying the scope of the query in the extract part,
the optional match part aims at representing additional logical conditions
that should be imposed on the result set. The clip part specifies the focus
of the query (relating to entities) in a similar way the select clause is used
in SQL queries. Finally, the optional construct part of an XML-GL query
specifies the new elements to be included in the result document and their
relationships to the extracted elements [8].

Figure 3 depicts a graphical representation of an XML-GL query. The aim
of this query is to select all (CD) items for which the product of the price and
the quantity is less than 50. As can be observed from this figure, arithmetical
operators may also be employed in the language, for the construction of
complex queries such as the one presented here.

Despite fulfilling most of the requirements defined in [8], the language
still lacks a precise definition of the semantics for the graphical symbols.
Relevant to the current context, XML-GL is designed for XML, rather for
more expressive knowledge representation languages such as RDF or OWL.

4 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

Fig. 3 XML-GLgraphical query example [8].

A graphical query language for OWL-DL ontologies (GLOO) is presented
in [9]. The main focus of GLOO consists of translating visual, diagrammatic
queries to DL-based query languages. The proposed version maps the graph-
ical queries to the new Racer Query Language (nRQL) [10], but without
matching the full expressive power of the latter language.

GLOO allows for construction of queries based on classes, individuals,
and roles. Additionally, a number of operators may be employed: negation
(true classical negation), complement (negation as failure), disjunction and
conjunction. An example GLOO query is depicted in Fig. 4. The aim of this
query is in selecting those sentences which have a human as subject and
object (both conditions must be simultaneously satisfied), where sentence is
a variable.

Fig. 4 GLOO example query [9].

The authors argue for the formality of the proposed language, employing as
main argument the connectivity syntax on which GLOO is based, and that
is defined based on a formal grammar [9]. Additionally, the way in which
elements of a query are placed into space has no influence on the semantics
of that query.

The EROS tool [19], is aimed at simplifying queries on RDFS models.
The main focus of the tool is to combine the advantages of a tree-based ap-
proach and a graph-based approach for visualizing RDFS, as both approaches

RDF-GL: A SPARQL-Based Graphical Query Language for RDF 5

present advantages and shortcomings. A tree view has the downside of being
somewhat limited, due to the fact that multiple inheritance is not visible,
while a graph view is limited because of its hierarchical structure that is
hard to discover. On the positive side, a tree view provides increased clarity
when visualizing the relevant entities. However, one can express more com-
plex structures with graphs than is possible by using trees. The combination
of the two approaches has resulted in an interface with two hierarchy trees:
one domain tree and one range tree. Properties are depicted as arrows from
left to right between tree nodes. The property-centric view of EROS is in line
with the RDF philosophy.

Despite the fact that EROS is developed for visualizing ontologies, it also
offers a built-in query generator [19]. This generator is based on RQL [13]
- a query language for RDF descriptions. RQL uses SELECT, FROM and
WHERE clauses. The EROS user is able to generate queries by selecting
nodes in the graph and assigning properties to them using normal buttons,
listboxes, etc. in the interface. The user can specify which variables should
be visible in the results.

Summarizing, EROS does not implement a graphical query language, but
visualizes ontologies and enables the user to query RDFS models using a
normal graphical interface. Vdovjak et al. claim that an effective visual rep-
resentation of ontologies is vital for users, since querying models without a
clear view of the ontology is cumbersome [19]. EROS provides an interface
in which the user is able to view the ontology both from the viewpoint of
classes and that of properties.

SPARQLViz [4] is a query editor centered around graphical query composi-
tion and natural language processing in an RDF visualization interface. This
tool is an extension for IsaViz, a visual interaction tool for RDF. SPARQLViz
implements graphical query composition by using a graphical user interface
for generating SPARQL queries. The user has to click through different menus
to compose a query, as presented in screenshots in [4]. The tool demonstrates
that it is possible to cover a great part of the SPARQL syntax with a simple
user interface. However, no graphical query language is implemented, which
makes the understanding of the relationships between different query parts
difficult.

In [1], GRQL is introduced. GRQL is an intuitive interface which is able
to construct RQL queries (like EROS) by using inputs from the user via
a graphical interface (for screenshots, see [1]). GRQL is a graphical query
generator in a way that it uses a graphical user interface. GRQL does not
implement a graphical query language and thus does not support drawing
queries. With GRQL, the user is able to browse through an RDFS model
and to generate a lot of different queries graphically. GRQL’s tree-based
interface offers many functionalities. It is able to handle a lot of different
actions, varying from browsing RDFS models towards all directions and the
possibility to translate a sequence of browsing actions into an RQL query.

6 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

The SEWASIE project (which stands for SEmantic Webs and AgentS in
Integrated Economies) [6] shows us it is possible to create a tool with which
a user can generate a query using an integrated ontology. The tool’s main
purpose is to offer functionality to generate conjunctive queries ready to be
executed by some evaluation engine associated to the information system.
With the SEWASIE tool, a user is able to compose a query using drop-down
menus and input fields (shown in screenshots in [6]). The composed query
can be viewed in a natural language-like form and in a graphical form. The
authors, however, remain unclear on how query execution works with the
application, and only demonstrate the capabilities of the query editor.

One of the main conclusion supported by the approaches presented in this
section is that, currently, no graphical query language based on SPARQL
exists for RDF. In the following section we introduce one such language in
the form of RDF-GL, aimed at querying RDF ontologies through a translation
of graphical queries to the state-of-the-art RDF query language - SPARQL.

3 RDF-GL

In this section we introduce RDF-GL, the first SPARQL-based graphical
language for RDF. The main constructs of the language are presented in
Sect. 3.1, whereas Sect. 3.2 elaborates on the subset of SPARQL which is
covered by RDF-GL. Sections 3.3 and 3.4 present how SPARQL queries are
mapped to RDF-GL, and how the latter can be converted into SPARQL
queries, respectively.

3.1 Language Constructs

The constructs of RDF-GL, which shall be denoted as elements, can be di-
vided into three main groups: boxes, circles and arrows. All elements can
be found in the example query presented in Figs. 5 and 6. The elements of
RDF-GL queries are assigned meaning based on their shape and color. In
what follows, we provide an informal overview hereof.

Boxes can have an orange, pink or green color, each color representing
different SPARQL query elements. An orange box, which is called a result
box or simply BR, contains information about the execution of the query,
e.g., the type of query and the way result variables are ordered. A pink box
(referred to as an subject/object box or as BSO) represents a subject or
an object of a triple in a SPARQL query, whereas a green box, the filtered
subject/object box (BFSO), is used to depict filtered subjects or objects.

We do have two types of circles. Blue circles, called union circles (CU),
are used in an RDF-GL query to define or-relationships, similar to SPARQL

RDF-GL: A SPARQL-Based Graphical Query Language for RDF 7

PREFIX j.1: <http://www.daml.org/2003/09/factbook/factbook-ont#>
SELECT DISTINCT ?name ?oil
WHERE
{

?country j.1:localShortCountryName ?name .
?country j.1:grossDomesticProductPerCapita ?gdp .
{

FILTER (?gdp < 1500) .
}
UNION
{

FILTER (?gdp > 2500) .
}
OPTIONAL
{

?country j.1:oilProvedReserves ?oil .
}

}
ORDER BY ASC(?gdp)

Fig. 5 Example SPARQL query.

UNION blocks. Purple circles – to which we refer to as optional circles (CO) –
are used for RDF-GL’s equivalents of SPARQL OPTIONAL blocks, in order
to identify statements which are optional.

RDF-GL uses four colors for arrows. Black arrows, labeled with a property,
depict a SPARQL triple predicate and are referred to as property arrows
(AP), since they can be interpreted as a property relationship between two
elements (a subject and an object), whereas grey arrows (also known as
optional arrows, or AO) are used to indicate optional statements. Yellow and
red arrows point to relationships belonging to a SPARQL UNION block,
where yellow arrows point to the first part of the block and the red arrows to
the second part. Two types of UNION arrows are used, because it is implied
by SPARQL, as SPARQL makes a distinction between the two block parts

Fig. 6 Example RDF-GL query.

8 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

to be joined. Yellow and red arrows are also called union arrows (AU1 and
AU2).

The use of the different elements of an RDF-GL query can best be illus-
trated by means of an example. Let us assume we want to search the CIA
World Factbook [7] for countries that have a gross domestic product per
capita of less than $1,500 or greater than $2,500. We want to know the name
of every country matching this criterion. Furthermore we want to know the
oil supply of every resulting country, if any data about oil supply is stored in
the database for these countries. The SPARQL query used for retrieving this
data is presented in Fig. 5, whereas the RDF-GL graphical representation of
this query is presented in Fig. 6. Note that from now on, we will refer to the
ontology as j.1 in our RDF-GL graphs to maintain readability. This prefix is
declared in the SPARQL query and does not need to be declared explicitly
in RDF-GL. In our RDF-GL, the prefix is thus considered given, as well as
the prefixes RDF, RDFS, and XSD.

We next move on to a more formal presentation of the different elements of
RDF-GL queries. In general, we denote an RDF-GL query by Q. Equations 1
through 4 give an overview of all possible elements of Q, and their different
types:

Q = {BOX, CRC, ARR} , (1)

BOX = {BR, BSO, BFSO} , (2)

CRC = {CU, CO} , (3)

ARR = {AP, AO, AU1, AU2} . (4)

The different types of boxes (BR, BSO, and BFSO) are grouped in the
BOX set. The circles joined in set CRC are referred to as CU and CO, which
are – as stated earlier – the blue and purple circle, respectively. Finally, the
black, grey, yellow and red arrows (AP, AO, AU1, and AU2, respectively) are
stored in set ARR.

Tables 2 and 3 give an overview of the constructs of RDF-GL introduced
in this section. For each construct we give its shape name, acronym, and
color, as well as a short description.

Table 2 Constructs of RDF-GL: shapes, properties and names.

Subset Name Acronym Color

Box (BOX) Result box BR Orange
Subject/object box BSO Pink
Filtered subject/object box BFSO Green

Circle (CRC) Union circle CU Blue
Optional circle CO Purple

Arrow (ARR) Property arrow AP Black
Optional arrow AO Grey
Union arrow 1 AU1 Yellow
Union arrow 2 AU2 Red

RDF-GL: A SPARQL-Based Graphical Query Language for RDF 9

Table 3 Constructs of RDF-GL: descriptions.

Element Description

BR Contains information about query execution
BSO Subject or object in a SPARQL triple
BFSO Filtered subject or object in a SPARQL triple
CU SPARQL UNION block
CO SPARQL OPTIONAL block
AP Predicate in a SPARQL triple
AO Points to an optional element
AU1 Points to an alternative element (part 1)
AU2 Points to an alternative element (part 2)

In what follows, we focus on giving a more precise description for each type
of element of an RDF-GL query, given in Fig. 7. We start with describing
drawing rules for boxes and continue by elaborating on circles. Finally, arrows
are discussed.

3.1.1 Boxes

In general, box shapes have five positions where properties can be defined.
There is one position in each corner, and one position in the center of the
figure. Figure 7(a) shows a basic box shape. The positions are indicated with
B1 to B5. The different types of boxes in our graphical query language not
only differ in color, but also in the positions they use and how they use them.
We continue with describing each type of box separately.

The BR box contains information about the execution of the query. In an
RDF-GL query, exactly one BR box should be present. Also, its properties
are bound to rules and restrictions. The box can be neither a child of another
element in the query (i.e., being on the receiving end of a property relation-
ship) nor parent of another element in the query (i.e., having a property
relationship). Additionally, some graphic rules apply.

First of all, the BR box should be orange. Furthermore, a query name
should be depicted, which is the centered text on position B5 in the example.
Subsequently, the corners of the box may each contain information.

The upper-left corner (B1) states whether the query should return only dis-
tinct values or not. The upper-right corner (B2) contains information about
the SPARQL query type, which can be only SELECT for the moment, and
the lower-right corner (B3) is reserved for ordering the results. The names of

(a) Box (b) Circle (c) Arrow

Fig. 7 Basic shapes of RDF-GL.

10 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

the variables by which the query results should be ordered (zero or more) are
displayed in this corner, where each name is followed by a symbol indicat-
ing an ascending or descending ordering. The lower-left corner (B4) contains
information about the result range, displayed as {from, to}. For example, if
the range is set to {5, 8}, results 5, 6, 7 and 8 will be displayed as results. It
should be noted that ending the range with “...” indicates infinity (for result
set length). Table 4 shows all BR symbols with their descriptions.

Table 4 Overview of symbols used in a BR box in RDF-GL.

Corner Symbol Explanation

Upper-left Display all results

Display only distinct results

Upper-right SELECT query
Lower-right Ascending ordering

Descending ordering
Lower-left { , } Range of results

The other boxes do not use all positions. The BSO box is a pink rectangle,
which represents a subject or object in a SPARQL triple. In RDF-GL, the
subject and object types are limited to a (new) variable, a blank node, an
ontology object, or data type. A variable is displayed as bold text on position
B5 (representing the variable name), with or without underline. By under-
lining the variable name, one can express the variable will be visible in the
query results. In case the box lacks a name, it represents a blank SPARQL
node. Finally, one can denote an object or data type as a BSO box by placing
its type on position B5, for example ¿typeÀ. A BSO box can be a child of
another BSO or BFSO box and can also be parent of another BSO or BFSO
box.

The same rules apply to the BFSO box, which represents a filtered subject
or object, except for the color, which is green instead of pink. Also, BFSO
boxes cannot have empty names (i.e., cannot represent a blank SPARQL
node) and their types are restricted to (new) variables. The content of the
applied filter is displayed on position B4, which is the lower-left corner of the
rectangle shaped construct.

3.1.2 Circles

Circles only have one position which can be given a property. This position,
C1 (shown in Fig. 7(b)), should always be used and is located in the shape’s
center.

A CU circle is used for representation of a SPARQL UNION block, which
models alternatives. In the center of this blue circle, “Union” is depicted.
Restrictions of the CU are that it can only be a child and/or parent of both
elements from the CRC set. Also, a CU can be parent of an AP arrow.

RDF-GL: A SPARQL-Based Graphical Query Language for RDF 11

Finally, AU1 and AU2 are associated with this circle. Note that conjunctions
are implicit in SPARQL and thus are not included in RDF-GL as a CU-like
symbol.

The purple colored CO circles, which are all labeled with “Opt”, represent
a SPARQL OPTIONAL block. These circles can be a child and/or a parent of
another circle in CRC. Also, CO circles can be parent of an AP arrow. Grey
arrows, AO, are used in combination with the CO circle. Note that RDF-
GL elements which are connected by arrows have parent-child relationships.
Children are on the receiving end of an arrow, while parents are on the
other side of an arrow. Using circles, one can create nested OPTIONAL and
UNION blocks, simply by pointing an AO, AU1, or AU2 arrow from one circle
to another circle. If an arrow points from a circle to an arrow, it represents
a SPARQL triple inside an OPTIONAL or UNION block.

3.1.3 Arrows

Figure 7(c) shows the basic shape of an arrow. Each arrow is constructed
with a transparent, closed head. As is the case with circles, arrows have only
one property position in their center: A1.

Four types of arrows can be distinguished, which are included in the ARR
set. The black arrow, AP, should be read as a property relationship between
two elements, for example: a resulting country has a gross domestic product
per capita of less than $2,500. The arrow represents a SPARQL triple pred-
icate. Property types can be object or data types from ontologies, variables
previously defined in the query and new variables. The property type is spec-
ified as a label located in the center of the arrow (position A1). An AP arrow
can be drawn from and to BSO and BFSO boxes.

An AO arrow indicates a SPARQL OPTIONAL relationship between two
elements. Just like the AP arrow, the AO arrow should be read as a property
relationship between two elements, but an AO arrow can only be drawn
between a CO circle and the two types of circles or between a CO circle and
an AP arrow.

As mentioned earlier, AU1 and AU2 arrows can be used in combination
with the CU circles. With AU1 arrows, one is able to define which relation-
ships belong to the first part of the SPARQL UNION block and with AU2
arrows one can define which belongs to the second part of the SPARQL
UNION block. These two arrows can only be drawn from a CU circle to both
circle types or from a CU circle to a black arrow.

An important point relates to the fact that arrows cannot be drawn from
and to every element in a query. Also, it is not possible for an element to have
children of every type. Tables 5 and 6 summarize the ways in which various
RDF-GL elements may be connected.

12 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

Table 5 shows the allowed directions for every arrow type (displayed as
columns) with respect to every element type (displayed as rows). Allowed
directions are: from an element (from), to an element (to), and none (–).

As we can see, no arrows can be drawn from or to BR boxes. In RDF-
GL, one is allowed to draw AP arrows from and to BSO and BFSO boxes.
Furthermore, AO arrows cannot be drawn from or to other AO, AU1, or
AU2 arrows, as well as from or to other boxes. However, these arrows can be
drawn to both types of circles and AP arrows, and can also be drawn from
CO circles. The AU1 and AU2 arrows have equal restrictions to those of the
AO arrows. However, the shapes differ in that AO arrows may only be drawn
from CO circles, whereas AU1 and AU2 arrows may only be drawn from CU
circles.

Table 5 Overview allowed arrow directions RDF-GL.

Arrow
Element AP AO AU1 AU2

BR – – – –
BSO from/to – – –

BFSO from/to – – –
CU – to from/to from/to
CO – from/to to to
AP – to to to
AO – – – –

AU1 – – – –
AU2 – – – –

Since arrows indicate parent-child relationships, we can deduce Table 6
from Table 5. Table 6 shows every possible parent-child relationship. Possible
parents are all types of boxes and circles, which are displayed in the columns
of the table. Possible children are all elements of an RDF-GL query, which
are displayed in the rows of the table. In Table 6 we summarize the valid
parent-child relationships, where (+) denotes a valid relationship and (–) an
invalid (not allowed) one.

As can be observed from this table, the orange box cannot be parent of
any element in an RDF-GL query. The BSO and BFSO boxes can only be

Table 6 Overview allowed parent-child relationships RDF-GL.

Parent
Child BR BSO BFSO CU CO AP AO AU1 AU2

BR – – – – – – – – –
BSO – + + – – – – – –

BFSO – + + – – – – – –
CU – – – + + – – – –
CO – – – + + – – – –
AP – – – + + – – – –
AO – – – – – – – – –

AU1 – – – – – – – – –
AU2 – – – – – – – – –

RDF-GL: A SPARQL-Based Graphical Query Language for RDF 13

parent of other BSO and BFSO boxes. Furthermore, both types of circles can
be parent of AP arrows and both types of circles. Finally, AO, AU1 and AU2
arrows cannot have any parents and none of the arrows can have children.

3.2 The SPARQL Subset of RDF-GL

In what follows, we define the subset of SPARQL which can be covered
using the elements of the RDF-GL query language by means of Extended
BackusNaur Form (EBNF) [15] rules, which are similar to the ones defined
for SPARQL in [14]. Most of the rules in [14] can be maintained. However,
since RDF-GL only covers a subset of SPARQL, we need to alter some of the
grammar rules in order to define the covered SPARQL subset adequately.

First of all, SPARQL queries can be either ASK, CONSTRUCT, DE-
SCRIBE, or SELECT queries. Usually, a query can be defined as a prologue,
followed by a query type. This prologue contains BASE and PREFIX state-
ments. In RDF-GL, currently only SELECT queries are covered, and thus
we can define our first rule, which differs from SPARQL in that the prologue
and all query types but the SELECT query are removed.

Normally, in SPARQL, a SELECT query consists of the string “SELECT”,
optionally followed by the string “DISTINCT” or “REDUCED”, followed by
one or more variables which have to be selected to be returned in the result
set, zero or more data set clauses containing FROM and NAMED elements, a
WHERE clause, and solution modifiers. The subset of SPARQL which covers
RDF-GL does not include all the elements of a regular SPARQL SELECT
query [14]. The string “REDUCED” is not supported, as well as the data set
clause (FROM and NAMED). Therefore, our second rule also differs from
the rule presented in the SPARQL grammar.

SPARQL implements two types of variables, which have a name preceded
by either a “?” or a “$” (type 1 and 2, respectively). RDF-GL can currently
only represent the former type, and thus we define another rule which differs
from the one presented in the SPARQL grammar.

Continuing defining the grammar rules of the SPARQL subset, we can
state that the WHERE clause is not fully supported by RDF-GL. Normally,
this clause would contain triples, FILTER elements, and graph patterns which
are not triples, i.e., OPTIONAL, UNION, and GRAPH elements. RDF-GL’s
SPARQL subset does not contain GRAPH elements, but the triples and FIL-
TER elements as defined in the clause are fully included. Therefore, we can
add three rules to our rule set. The first two rules are exactly the same as

14 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

in the grammar of SPARQL, but the last rule is redefined so that it cannot
contain GRAPH elements. The rules are the following.

Furthermore, the solution modifiers of the SELECT query (i.e., ORDER
BY, LIMIT, and OFFSET) belong to the subset of SPARQL that can be
represented by elements of RDF-GL.

When all non-terminal rules are refined using the rules of the SPARQL
grammar, which of course all apply to some extent to our subset, the obtained
rule set is as given in Fig. 8. Figure 9 shows all terminals.

Fig. 8 Rules in RDF-GL’s subset of SPARQL (non-terminals).

RDF-GL: A SPARQL-Based Graphical Query Language for RDF 15

Fig. 8 Rules in RDF-GL’s subset of SPARQL (non-terminals), continued.

3.3 Mapping SPARQL to RDF-GL

This section explains how the most common features of a SPARQL SELECT
query look like in RDF-GL, or in other words, how SPARQL is mapped to
RDF-GL. We try to create a mapping using the main rules of Fig. 8, as
discussed in Sect. 3.2.

16 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

Fig. 9 Rules in RDF-GL’s subset of SPARQL (terminals).

3.3.1 Query Type and Sequence Modifiers

As stated in Sect. 3.2, RDF-GL uses a subset of SPARQL, which results in
the fact that only SELECT queries can be performed to a certain extent. The
main elements of this query which are implemented in the RDF-GL language,
are sequence modifiers, variables to include in the result set, and a WHERE
clause (Rules 1 and 2). These sequence modifiers, i.e., DISTINCT, LIMIT,
OFFSET, and ORDER BY (Rules 4, 5, 6, 8, 9), all can be defined using a BR
box and the symbols from Table 4. Furthermore, the variables that have to
be selected are denoted as pink or green (filtered) boxes with an underlined,
centered label.

Figure 10 shows the translation from a SPARQL SELECT query that uses
all sequence modifiers to an RDF-GL query. The displayed query asks for all

RDF-GL: A SPARQL-Based Graphical Query Language for RDF 17

distinct elevations of countries in the CIA World Factbook. Results 5, 6,
7 and 8 are returned in a descending order. The SPARQL triple (?country
j.1:elevation ?elevation .) is drawn using two BSO boxes, both representing
variables. Solely information on elevation will be returned in the result set,
which is denoted by the underlining of the variable name in the RDF-GL
query. In the BR box, all corners have been used to display the sequence
modifiers.

PREFIX j.1: <http://www.daml.org/2003/09/factbook/factbook-ont#>
SELECT DISTINCT ?elevation
WHERE
{

?country j.1:elevation ?elevation .
}
ORDER BY DESC(?elevation) OFFSET 5 LIMIT 4

(a) SPARQL

(b) RDF-GL

Fig. 10 Mapping query type and sequence modifiers.

3.3.2 Filtered Variables

One element that is included in the WHERE clause (Rules 3 and 10) of a
SPARQL query in general, as well as in our implemented subset of SPARQL,
is the FILTER element (Rule 15). RDF-GL has full functionality with respect

FILTER (?gdp > 1250) .

(a) SPARQL

(b) RDF-GL

Fig. 11 Mapping filters.

18 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

to filtering, as the SPARQL filter condition is embedded in the graphical
representation.

In RDF-GL, filtering variables used in a query can be done by denoting
the filtered variable as a BFSO box with a variable name and filter. This
box is equal to a FILTER statement in a query written in SPARQL syntax.
Figure 11 shows how a filter is applied to a variable called gdp in SPARQL
and how the same filter can be applied to a variable in a RDF-GL query. In
RDF-GL, the filter is displayed in the lower-left corner of the box representing
the variable and the box has been colored green.

3.3.3 Triples

Another important element in the WHERE clause is the triple. Each query
contains one or more triples. According to Rule 11 and 19 and their refine-
ments, a triple typically consists of a variable or term, followed by a property
and another variable or reference to an IRI from an ontology. A term can
either be a reference to an IRI from an ontology, some literals (data types),
or a blank node. A property is defined as a variable, IRI, or data type from
an ontology (Rule 20 and some of the rules after it). The three elements of a
triple are also called subject, predicate and object.

With RDF-GL, these elements are denoted as two BSO or BFSO boxes
(representing the subject and object) and an AP arrow between them (rep-
resenting the predicate). The arrow points from the box representing the
triple’s subject to the box representing the triple’s object and is labeled with
the predicate name. Both boxes and arrows are able to represent all required
elements.

Figure 12 shows a single triple in SPARQL syntax and the same triple in
RDF-GL. This triple asks for the classes of which the class EthnicGroup is a
subclass and stores them in a variable called class. Two BSO boxes and one

j.1:EthnicGroup rdfs:subClassOf ?class .

(a) SPARQL

(b) RDF-GL

Fig. 12 Mapping triples.

RDF-GL: A SPARQL-Based Graphical Query Language for RDF 19

arrow have been used to construct this triple in RDF-GL. The upper box
represents the subject, and the lower box represents the object, which in this
case is a variable. The arrow depicts the triple’s predicate.

3.3.4 Alternatives

A third part of the WHERE clause of the full SPARQL set is not entirely
covered by RDF-GL: the graph patterns which are not triples (Rule 12 shows
what is covered). One of those patterns is called the UNION graph pattern
(Rule 14), which is nothing more than an element which groups 2 query
blocks (containing for example triples) and takes the union of both groups.
This way one is able to represent alternatives.

In RDF-GL, a CU circle and AU1 and AU2 arrows are used to point to
elements (triples and other graph patterns) which represent a union part. The
user decides which triples belong to which part of the union, and draws the
arrows accordingly. Whichever elements belong to the first group (at least 1)
will be pointed at with a yellow arrow (AU1), and the other elements (also
at least 1) will be pointed at with a red arrow (AU2). These arrows point
from a CU circle to AP arrows (predicates of triples), other CU circles, or CO

?country j.1:highwaysTotal ?hw .
{

FILTER (?hw < 20000) .
}
UNION
{

FILTER (?hw > 150000) .
}

(a) SPARQL

(b) RDF-GL

Fig. 13 Mapping alternative triples.

20 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

circles. In case circles are being pointed at, it can lead to nested alternatives
or options, which will be discussed shortly.

Figure 13 shows an alternative in SPARQL and how the same alternative
is represented in RDF-GL. The UNION depicted in Fig. 13 joins a variable
which is filtered in two different ways. The countries which have a total high-
way kilometers of less than 20,000 kilometers as well as the countries which
have a total highway kilometers of more than 150,000 have to be selected.

3.3.5 Options

The rules we have defined for our SPARQL subset indicate that not only the
UNION element is included in RDF-GL, but also the OPTIONAL element. In
SPARQL, one is able to provide additional triples by using the OPTIONAL
block (Rule 13).

In RDF-GL, a CO circle and AO arrows are used to point to triples which
have to be marked as optional. The AO arrows point from CO circles to AP
arrows (representing predicates of triples which have to be added to the set
of additional triples).

Figure 14 shows an optional triple in SPARQL and how the same triple is
marked as additional in our developed GQL. The triple depicted in Fig. 14
asks for the number of helicopter ports in a resulting country and stores it in
a variable called heli.

OPTIONAL
{

?country j.1:heliports ?heli .
}

(a) SPARQL

(b) RDF-GL

Fig. 14 Mapping optional triples.

RDF-GL: A SPARQL-Based Graphical Query Language for RDF 21

3.3.6 Nested Options and Alternatives

In SPARQL, it is possible to create nested options and alternatives. By look-
ing at the defined grammar rules carefully, it becomes clear that UNION and
OPTIONAL blocks not only include triples, but also other graph patterns
which are not triples. Recalling our implementation of those graph patterns,
we see that these patterns are in fact UNION and OPTIONAL blocks and
thus it is possible to nest several options and alternatives in one query. This
is also possible in RDF-GL. One can denote nested options and/or alterna-
tives in RDF-GL by letting one or more AO, AU1, or AU2 arrows point to
circle(s). These arrows are not only allowed to point to AP arrows, but also
to both types of circles.

Figure 15 combines the queries from Figs. 13 and 14 by nesting the option
from Fig. 13 in the second union part of the query from Fig. 14. The order
in which the union parts are specified is not relevant. Arrows pointing from
the CU circle to the AP arrows indicate the triples to which these arrows
belong should be regarded as alternatives. The circle to which an AU2 arrow
is pointing should also be added to the same alternative. The AO arrow
pointing to an AP arrow indicates that the triple to which this arrow belongs
should be optional.

?country j.1:highwaysTotal ?hw .
{

FILTER (?hw < 20000) .
}
UNION
{

FILTER (?hw > 150000) .
OPTIONAL
{

?country j.1:heliports ?heli .
}

}

(a) SPARQL

(b) RDF-GL

Fig. 15 Mapping nested triples.

22 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

3.4 Converting RDF-GL to SPARQL

RDF-GL queries can be converted to SPARQL queries, using the algorithms
presented in Figs. 16 and 17. These algorithms generate SPARQL queries
based on drawing order. The SPARQL query is generated in a fixed order.
First the default prefixes for RDF, RDFS, and XSD are generated, as well
as for the ontology currently used (1). Subsequently, the query type is deter-
mined (2), after which the complete WHERE clause is generated (3). Finally,
the ORDER BY (7) and the LIMIT and OFFSET (8) statements are deter-
mined. These main steps are directly related to some of the basic rules we
defined in Sect. 3.2 (Rules 1 and 2, as well as 3 and 7).

Generating the prefixes and fetching the query type (with or without DIS-
TINCT parameter and variables to select) is quite straightforward. Generat-
ing the complete WHERE clause, however, involves more complex actions.
First, all ARR elements are read and converted to triples (4). We have seen in
Rules 10, 11, and 19, that many types of triple configurations exist. If these
triples do not belong to a UNION or OPTIONAL block, they are added to
the SPARQL query (5). Subsequently, all CU circles and CO circles with
their children (triples or other circles) are added to the query (6), using the
recursive algorithm shown in Fig. 17. The generation of the ORDER BY,
LIMIT and OFFSET is trivial and is solely based on the Rules 6 to 9.

4 SPARQLinG

This chapter introduces our RDF-GL editor: SPARQLinG. We elaborate on
the technical details of this editor and provide an overview of the application’s
functionality. Finally, we present experimental results on the SPARQLinG
tool.

4.1 Design

The SPARQLinG RDF-GL editor is a Java-based editor, which is able to read
an RDF file (which contains both schema and instance data) and interpret the
ontologies used, and offers users with little knowledge of SPARQL and some
knowledge on the domain of the RDF file tools to draw RDF-GL queries in an
intuitive way. Furthermore, RDF-GL queries can be converted into SPARQL
queries and can be executed.

Although quite a few Java libraries for drawing graphs are around, such
as JGraph [17], Piccolo [12], and Prefuse [18], none of these are suitable for
SPARQLinG, since real-time drawing mostly is not supported and it is diffi-
cult to store non-standard information in the graph elements of the libraries.

RDF-GL: A SPARQL-Based Graphical Query Language for RDF 23

Data: all elements from drawing
Result: RDF-GL converted to SPARQL
query = “”;
query += prefixes; (1)
query += BR.type; (2)
if BR.type = SELECT then

if BR.distinct = true then
query += DISTINCT;

foreach arrow in ARR and box in BOX do
if show = true and type = variable and is not in SELECT then

query += name;

end
query += WHERE; (3)
foreach arrow in ARR do

triple = “”; (4)
//Subject
foreach box in BOX do

if box.id = arrow.fromId then
triple += box.name, blank or box.objectType;
if filter present and box.type = variable then

store filter;

end
//Predicate
triple += arrow.name or arrow.objectType;
//Object
foreach box in BOX do

if box.id = arrow.toId then
triple += box.name, blank or box.objectType;
if filter present and box.type = variable then

store filter;

end
store triple with filter in triples;

end
foreach triple in triples do

search for references in AU1, AU2, and AO; (5)
if no references found then

query += triple;
if triple has filter then

query += filter;

end
foreach circle in CU and CO do

search for parentless circle; (6)
if found then

query += getChildren(id);

end
query += BR.orderBy; (7)
convert BR.range to limit and offset; (8)
query += limit;
query += offset;
return query;

Fig. 16 Generating a SPARQL query (generateQuery).

24 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

Result: triples and children’s triples
Input: id of circle
query = “”;
store all circle children which are triples in triples;
forall triple in triples do

query += triple;
end
store all circle children which are other circles in CRC;
forall circle in CRC do

query += getChildren(circle.id);
end
return query;

Fig. 17 Generating a SPARQL query (getChildren).

Also, these libraries cause a lot of overhead. Therefore, both the functionality
of the graphical user interface and the graphics are created without using any
existing libraries. Reading and interpreting RDF files however, is done using
the Jena [16] library. The latter library is also used for executing SPARQL
queries.

At an abstract level, we distinguish between three main components of
SPARQLinG: i) Ontology Management, ii) Query Drawing, and iii) Query
Execution. In what follows, we describe the main functionality hereof and dis-
cuss the interactions between components, which is also illustrated in Fig. 18.

An RDF file which has to be queried is fed into the Ontology Management
component. The RDF Schema ontology used in the RDF file is extracted, so
that it can be used in the Query Drawing component. Also, the RDF instances
which populate the RDF Schema ontology are extracted. Both RDF instances
and RDF Schema are used in the Query Execution component.

After loading an RDF file, the Query Drawing component offers the user
tools to draw RDF-GL queries and handles all interface tasks. RDF-GL ele-
ments can be drawn using all elements stored in the ontology. The RDF-GL
query is fed into the third module, the Query Execution module.

The Query Execution module handles two tasks. The first task is convert-
ing an RDF-GL query into a SPARQL query, which is done using the algo-
rithms elaborated on in Sect. 3.4. The second task is executing this SPARQL

Fig. 18 Design of SPARQLinG.

RDF-GL: A SPARQL-Based Graphical Query Language for RDF 25

query, using the ontology and RDF instances read from the input file. The
query results are returned to the Query Drawing component.

4.2 Using SPARQLinG

The SPARQLinG RDF-GL editor is a tool like many other drawing applica-
tions. The user interface contains floating windows, which can be moved and
toggled on and off. These windows contain drawing tools, settings, and query
results. Furthermore, hot-keys are implemented for several actions, such as
opening and saving files and executing queries. Figure 19 shows the user
interface of SPARQLinG.

Fig. 19 User interface of SPARQLinG.

The background of the SPARQLinG tool is a large canvas, which can
contain a grid – if desired – making it easier to draw and align RDF-GL
elements. Elements can be drawn by selecting the appropriate drawing tool
and by clicking and dragging on the canvas. SPARQLinG implements a sketch
mode, so that users can see a sketch-like representation of an element while
holding the mouse, before actually drawing the element (when the mouse is
released). Figure 20 shows how a box is drawn in SPARQLinG.

Other features related to drawing RDF-GL queries are moving, resizing,
and deleting elements. Whereas boxes can be drawn anywhere on the canvas
and their dimensions can be manipulated, arrows can only be drawn from one
(valid) element to another – forcing the user to actually touch both elements
while drawing the arrow – and their dimensions cannot be changed, since the

26 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

tool automatically optimizes the location of arrows between two elements.
All properties of boxes and arrows can be edited intuitively by means of a
property window, which appears when the user clicks on an element.

(a) Sketch (b) Drawn

Fig. 20 Drawing a box.

SPARQLinG’s features with respect to file input and output are rather
basic. Entire RDF-GL drawings can be saved and loaded using dialogs, just
like regular graphical applications support saving and loading. Also, drag
and drop is supported for loading RDF-GL files. Furthermore, the user can
specify the RDF file which is to be queried. After the user specifies the RDF
file, the tool automatically parses the file, so that the ontology can be used
for drawing RDF-GL queries and queries can be executed immediately. For
RDF-GL queries to be executed, the tool is also able to convert RDF-GL
to SPARQL. Query results are displayed in a result window, along with the
RDF-GL query represented in SPARQL, as shown in Fig. 21.

Fig. 21 Results of an executed RDF-GL query.

RDF-GL: A SPARQL-Based Graphical Query Language for RDF 27

Despite the fact that prefixes currently are not fully supported in RDF-
GL, SPARQLinG automatically assigns a prefix to the ontology used and to
default RDF, RDFS, and XSD elements, to make it easier for users to browse
through the available IRIs and to ensure readability of the diagrams. In case
full paths (IRIs) are used, labels would get hard to read. Future versions of
RDF-GL are likely to support prefixes and thus this functionality eventually
will become obsolete.

4.3 Experiments with RDF-GL and SPARQLinG

A usability experiment held under a small group of students with fair knowl-
edge on SPARQL querying shows that the combination of RDF-GL and an
RDF-GL editor such as SPARQLinG enables one to create and execute com-
plex queries in a convenient and intuitive way. The participants are chosen
randomly from a group of students who are indicative of a cross-section of
potential end users.

The participants are given a complex query related to the CIA World
Factbook ontology (as described earlier), which they need to translate into
a SPARQL query and an RDF-GL query. Performance is measured with
how much time each user needs to complete each of the two queries. Also,
accuracy is measured by means of the number of mistakes each member of
the test group makes.

The students need to query the CIA World Factbook for countries which
have an import or export to neighbors worth more than $10,000,000,000 a
year. The query needs to return the names of both countries and their neigh-
boring trading partners, as well as the percentages of imports and exports
and optionally, the inflation rate of the neighboring partners. Only the first
20 results are desired and should be ordered by country name (ascending).
In SPARQL, a query which returns the requested results is given in Fig. 22,
whereas its RDF-GL query equivalent is presented in Fig. 23.

Results show that about 60% of the students state that creating a complex
query using RDF-GL takes (slightly) less time than manually inserting a
SPARQL query (for SPARQL experts). Converting the (natural language)
search assignment to a valid query takes about as much time with both query
languages, but actually drawing this query in RDF-GL sometimes is more
time consuming than manually inserting a SPARQL query. The SPARQLinG
or RDF-GL user especially benefits from the expressive power of RDF-GL
when reusing variables, changing or adding relations between variables, and
changing query characteristics (e.g., query type, variables to select). The more
complex a query is, the more a user can benefit from RDF-GL over SPARQL.

Although manually inserting a SPARQL query might be faster than draw-
ing an RDF-GL query in some cases, about 80% of the participants indicate
that querying becomes easier to do with RDF-GL, because a clear overview

28 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

PREFIX j.1: <http://www.daml.org/2003/09/factbook/factbook-ont#>
SELECT DISTINCT ?nameC ?nameN ?percentExp ?percentImp ?inflation
WHERE
{

?country j.1:conventionalShortCountryName ?nameC .
?country j.1:border ?border .
?border j.1:country ?neighbor .
?neighbor j.1:conventionalShortCountryName ?nameN .
?country j.1:exportPartner ?partnerExp .
?partnerExp j.1:percent ?percentExp .
?partnerExp j.1:country ?neighbor .
?country j.1:importPartner ?partnerImp .
?partnerImp j.1:percent ?percentImp .
?partnerImp j.1:country ?neighbor .
{

?country j.1:imports ?imports .
FILTER (?imports > 10000000000) .

}
UNION
{

?country j.1:exports ?exports .
FILTER (?exports > 10000000000) .

}
OPTIONAL
{

?neighbor j.1:inflationRate ?inflation .
}

}
ORDER BY ASC(?nameC) LIMIT 20

Fig. 22 Complex SPARQL query.

of the complex construction of the query can easily be maintained, since an
RDF-GL query usually gives more insight in relations between variables and
the entire construction of the query. Problems with respect to easily under-
standing the expected results of a query and the way a query is constructed
will arise when complex queries in SPARQL syntax become larger, whereas
RDF-GL’s symbols support the understanding and the construction of the
query visually, which is more natural for the average end user.

The same 80% of participants that state that querying becomes easier
to do using RDF-GL, indicate that the SPARQLinG editor simplifies query
creation, because it only allows syntactical correct drawing actions, so that
(drawing) errors related to RDF-GL elements occur less. Furthermore, the
SPARQLinG editor’s functionality of offering all available IRIs from the on-
tology which is being used, is deemed valuable, as well as the ease with which
one can edit the properties of the RDF-GL elements.

All participants agree on the fact that SPARQLinG is able to convert the
RDF-GL query to a SPARQL query within acceptable time (less than one
second). It should be noted that, while converting RDF-GL to SPARQL and
querying the RDF file is done very fast, emptying large result buffers could
take up quite some time. Furthermore, the students state that the interface
of the tool runs smoothly and works intuitively enough to let a user with fair
knowledge of SPARQL be able to draw his or her first RDF-GL query in only
a few minutes.

RDF-GL: A SPARQL-Based Graphical Query Language for RDF 29

Fig. 23 Complex RDF-GL query.

5 Conclusions and Further Research

The main aim of RDF-GL is to cover as much of SPARQL expressivity as
possible while maintaining simplicity and intuitiveness. For best results, a
graphical query language such as RDF-GL should be combined with a tool,
such as SPARQLinG. This way, complexity of a textual query language (i.e.,
SPARQL) is hidden by using symbols, text and menus. Not every aspect
of a textual query language can be covered by symbols of a graphical query
language, and thus some text elements have to be added to the GQL. Drawing
(recognizable) query elements is difficult and this is where the user interface
comes to play a major part. A user interface should offer the user convenient
menus and windows to edit properties of symbols in a query. The combination
of RDF-GL and SPARQLinG, makes one able to create and execute complex
queries in a convenient and intuitive way.

RDF-GL is the first graphical query language based on SPARQL, designed
for RDF. The focus of the language is on SPARQL SELECT queries. Al-
though RDF-GL can handle almost every SELECT query, it currently offers
no support for FROM, FROM NAMED and GRAPH elements. However, the
design of RDF-GL allows for extensions, and this should form the main focus
of future research.

For the design of graphical RDF-GL queries, we have introduced the
SPARQLinG application, a Java-based framework that comprises all the re-
quired components for the design as well as the generation of queries on any
RDF data sources. Currently, the editor lacks a converter from SPARQL

30 F. Hogenboom, V. Milea, F. Frasincar, U. Kaymak

queries to RDF-GL queries, which is to be investigated in further research.
Naturally, any syntactic/semantic extension of RDF-GL should be mirrored
in the application, and this constitutes an inevitable attention point of future
development.

References

1. Nikos Athanasis, Vassilis Christophides, and Dimitris Kotzinos. Generating On the Fly
Queries for the Semantic Web: The ICS-FORTH Graphical RQL Interface (GRQL).
In International Semantic Web Conference (ISWC 2004), pages 486–501. Springer,
2004.

2. Tim Berners-Lee. Notation 3 (N3) A readable RDF syntax, 1998.
3. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific

American, 284(5):28–37, 2001.
4. Jethro Borsje and Hanno Embregts. Graphical Query Composition and Natural Lan-

guage Processing in an RDF Visualization Interface. Bachelor Thesis, Erasmus Univer-
sity Rotterdam, 2006. http://www.jborsje.nl/publications/bachelor-thesis.pdf.

5. Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema - W3C Recommendation 10 February 2004, 2004.

6. Tiziana Catarci, Paolo Dongilli, Tania Di Mascio, Enrico Franconi, Giuseppe Santucci,
and Sergio Tessaris. An Ontology Based Visual Tool for Query Formulation Support.
In Sixteenth European Conference on Artifical Intelligence (ECAI 2004), volume 110
of Frontiers in Artificial Intelligence and Applications, pages 308–312, Amsterdam,
The Netherlands, 2004. IOS Press.

7. Central Intelligence Agency. The CIA World Factbook, 2008. See https://www.cia.

gov/library/publications/the-world-factbook/index.html, last visited Oct. 2008.
8. Stefano Ceri, Sara Comai, Ernesto Damiani, Piero Fraternali, Stefano Paraboschi, and

Letizia Tanca. XML-GL: A Graphical Language for Querying and Reshaping XML
Documents. Computer Networks, 31(11–16):1171–1187, 1999.

9. Amineh Fadhil and Volker Haarslev. GLOO: A Graphical Query Language for OWL
Ontologies. In OWL: Experience and Directions (OWLED 2006). CEUR-WS, 2006.

10. Volker Haarslev, Ralf Möller, and Michael Wessel. Querying the Semantic Web with
Racer + nRQL. In Third International Workshop on Applications of Description
Logics (ADI 2004). CEUR-WS, 2004.

11. Andreas Harth, Sebastian Ryszard Kruk, and Stefan Decker. Graphical Representation
of RDF Queries. In Fifteenth International Conference on World Wide Web (WWW
2006), pages 859–860, New York, NY, USA, 2006. ACM Press.

12. Human-Computer Interaction Lab, University of Maryland. Piccolo, 2007. See http:

//www.cs.umd.edu/hcil/jazz/index.shtml, last visited Oct. 2008.
13. Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plexousakis,

Forth Vassilika Vouton, and Michel Scholl. RQL: A Declarative Query Language for
RDF. In Eleventh International World Wide Web Conference (WWW 2002), pages
592–603, New York, NY, USA, 2002. ACM Press.

14. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF - W3C
Recommendation 15 January 2008, 2008.

15. Roger S. Scowen. Extended BNF – A generic base standard. ISO 14977.
16. SourceForge. Jena, 2008. See http://jena.sourceforge.net/, last visited Oct. 2008.
17. SourceForge. JGraph, 2008. See http://www.jgraph.com/, last visited Oct. 2008.
18. SourceForge. Prefuse, 2008. See http://prefuse.org/, last visited Oct. 2008.
19. Richard Vdovjak, Peter Barna, and Geert-Jan Houben. EROS: Explorer for RDFS-

Based Ontologies. In Eigth International Conference on Intelligent User Interfaces
(IUI 2003), pages 330–330, New York, NY, USA, 2003. ACM Press.

