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Abstract: Due to the market sensitivity to emerging news, investors
on financial markets need to continuously monitor financial events
when deciding on buying and selling equities. We propose the use
of lexico-semantic patterns for financial event extraction from RSS
news feeds. These patterns use financial ontologies, leveraging the
commonly used lexico-syntactic patterns to a higher abstraction level,
thereby enabling lexico-semantic patterns to identify more and more
precisely events than lexico-syntactic patterns from text. We have
developed rules based on lexico-semantic patterns used to find events,
and semantic actions that allow for updating the domain ontology
with the effects of the discovered events. Both the lexico-semantic
patterns and the semantic actions make use of the triple paradigm that
fosters their easy construction and understanding by the user. Based
on precision, recall, and F1 measures, we show the effectiveness of the
proposed approach.
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1 Introduction

The days when professional brokers used to be the only ones operating on
financial markets are long gone. Today, anyone can buy or sell equities, acting
thus as a financial investor, by making use of specific Web-based financial
information systems. As financial markets are extremely sensitive to news (Mitchell
& Mulherin, 1994; Oberlechner & Hocking, 2004) one needs to continuously
monitor which financial events take place.
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Its low costs and high rate of adoption, made the Web one of the most popular
platforms for news publishing. Unfortunately, the Web is a victim of its own
success as thousands of news items are being published daily on different sources
and with different content. This makes real-time news analysis a difficult process.
In order to alleviate this problem, RSS news feeds aim to summarize and categorize
the news information on the Web. Unfortunately, for financial investors interested
in specific financial events (e.g., acquisitions, stock splits, dividend announcements,
etc.), this categorization is too general to be of direct use in the decision making
process. The manual identification of these events is a difficult and time consuming
process that prevents the financial investor from promptly reacting on the market.

The Semantic Web provides the right technologies to classify the information
in news items and make it available for both human and machine consumption.
Being able to identify financial events from news items would help the trader to
make a decision whether to react on the financial market. For example, recognizing
a buy event such as “Google buys YouTube” in a news item would support the
trader’s decision to buy shares of YouTube as these will possibly increase in value
after the buyout.

In this paper, we investigate how a user acting as a trader can identify the
financial events of interest in titles extracted from RSS news feeds. The only
requirement that we have for the user is that (s)he should be familiar with the
financial domain as captured in an ontology. Due to his interest in buying and
selling stocks of certain companies we assume that the user has a minimum
knowledge of the financial markets. The user does not have to be familiar with
Semantic Web technologies, the domain ontology will be presented in a graphical
manner as a tree of concepts and concept relationships. Such an approach should
allow the user to describe the events of interest, extract the event instances from
news items, and update the domain ontology based on the effects of the discovered
event instances.

During the design of our approach special attention is given to the user
interface that should allow a simple interaction between the user and the system.
Such an interface should enable a simple specification of the events of interest and
event triggered-updates for the domain ontology. For this purpose we exploit the
triple paradigm due to its intuitiveness and simplicity. Triples are used for defining
lexico-semantic information extraction patterns that resemble simple sentences in
natural language. In addition, triples are also used to express the event-triggered
ontology updates.

In order to experiment with the proposed approach we have implemented a
rule engine that allows rules creation, financial event extraction from RSS news
feed headlines, and ontology updates. The financial event recognition is a semi-
automatic process, where the user needs to manually validate the automatically
discovered events before the ontology updates are triggered. In this way, we
make sure that the ontology is not modified based on incorrectly discovered
events. The effectiveness of the approach is measured by computing the accuracy,
error, precision, recall, F1 measure, and usefulness of the automatically discovered
financial events from RSS news feeds.

The contribution of this paper is twofold. The work presented here is an
extension of previous work on news personalization (Borsje et al., 2008; Frasincar
et al., 2009; Schouten et al., 2010). The research presented in (Borsje et al.,
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2008; Frasincar et al., 2009) does not make use of lexico-semantic patterns, and
merely identifies concepts instead of events. Similarly to this paper, in (Schouten
et al., 2010), we do identify events using lexico-semantic patterns. However, here
we provide more details on lexico-semantic patterns, i.e., their definition and
evaluation, and also, we discuss three new models for event recognition, i.e., strict,
relaxed, and hybrid models.

Section 2 continues with presenting related work on semi-automatic event
recognition in news items. Section 3 explains the details of our approach, whereas
Section 4 introduces the rule engine we have implemented. The rule engine is
evaluated in Section 5. Finally, we draw conclusions in Section 6.

2 Related Work

A lot of research has already been done in areas related to (semi-)automatic
recognition of financial events in news. For instance, several user interfaces and
frameworks have been introduced that are designed for interpreting news feeds.
This section continues with discussing some related work that is relevant for our
research.

Vargas-Vera and Celjuska introduce a system that recognizes events in news
stories (Vargas-Vera & Celjuska, 2004). This system identifies these events by
means of information extraction and machine learning technologies and is based on
an ontology. This ontology is populated sem-automatically. The system integrates
both Marmot, a Natural Language Processing (NLP) tool, and Crystal, which is
a dictionary induction tool used for concept learning. Also, a component called
Badger is added, which is used for matching sentences with known concept
definitions. Vargas-Vera and Celjuska demonstrate that their system works with
the KMi Planet news archive of the Knowledge Media Institute (KMi).

StockWatcher (Micu et al., 2008) is an OWL-based Web application that
enables the extraction of relevant news items from RSS feeds concerning the
NASDAQ-100 listed companies using a customized, aggregated view of news.
StockWatcher is able to rate the retrieved news items based on their relevance.
Another news interpreter is Hermes (Borsje et al., 2008). In contrast to
StockWatcher, this tool is not limited to interpreting a certain segment of financial
news, as it also supports decision making in other domains that are highly
dependent on news. Hermes aggregates news from several sources and filters
relevant news messages using Semantic Web technologies.

PlanetOnto (Kalfoglou et al., 2001) represents an integral suite of tools used
to create, deliver, and query internal KMi newsletters. Similar to the approach
proposed here, domain ontologies are employed for the identification of events in
news items. PlanetOnto uses a manual procedure for identifying information in
news items, whereas we aim at semi-automatic information extraction from news
items. Furthermore, PlanetOnto uses the ontology language OCML (Motta, 1999)
for knowledge representation, while we aim to employ OWL, which is the standard
Web Ontology Language (Bechhofer et al., 2004).

SemNews (Java et al., 2006) uses a domain-independent ontology for
semi-automatically translating Web pages and RSS feeds into meaningful
representations that are presented as OWL facts. For this purpose,
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OntoSem (Nirenburg & Raskin, 2004) is used, which is an NLP tool that performs
lexical, syntactic, and semantic analysis of text. OntoSem has a specific frame-
based language for representing the ontology and an onomasticon for storing
proper names. In our framework, both the input ontology and the facts extracted
from news items are represented in OWL. Our solution proposes to use a semantic
lexicon instead of an onomasticon, which is a richer knowledge base that can
better support the semantic analysis of text.

Many of the current approaches for automating information extraction
from corpora, for instance PANKOW (Cimiano & Staab, 2004) and
OntoCoSemWeb (Baazaoui-Zghal et al., 2007), use rules that are based on lexico-
syntactic patterns as proposed by Hearst (1992; 1998). An existing ontology is
used to extract pairs of related concepts in order to find hyponym and hypernym
relations. These relations are found by applying regular expression patterns in
free text. As lexico-syntactic rules do not take into account the semantics of the
different constructs involved in a pattern we do find such an approach limited. Our
solution exploits lexico-semantic patterns, which remove some of the ambiguity
inherent to the lexico-syntactic rules. In addition, the proposed rules provide a
higher abstraction level than lexico-syntactic rules, making their development and
maintenance easier.

When it comes to updating knowledge bases, one could define action rules
that are to be executed after patterns have matched. These actions can be
expressed in various ways. A suitable candidate for implementation in our learning
framework would be the Semantic Web Rule Language (SWRL) (Horrocks et
al., 2004). SWRL is a rule language based on a combination of both OWL, and
RuleML (Boley et al., 2001). Rules in SWRL are an implication between an
antecedent (body), and a consequent (head). The rules can be read as follows: if
the conditions in the body hold, then the conditions specified in the head must
also hold.

There are some drawbacks regarding the usage of SWRL in our framework.
First of all, SWRL can be used to add individuals and property instances to an
ontology, but retractions are not allowed. This means it is impossible to remove
individuals or instances of properties from an ontology using SWRL. Negation is
also not supported at this moment. SWRL can be used in Protégé together with
the Jess plugin, and the Racer or Pellet inference engines (Golbreich & Imai, 2004).
However, good documentation on the use of SWRL is lacking and Racer is not
open source.

Another alternative to express actions is by using a self-defined syntax. This
gives us the freedom to fully customize both the storing and execution mechanisms.
However, doing so is a tedious job. Besides that, it would be better to adhere to
existing standards in order to be able to easily reuse this framework in another
context, which brings us to another alternative, i.e., the usage of the triple format.
The triple paradigm is compatible with existing Semantic Web standards and helps
improving interaction between the user and the system due to its intuitiveness and
simplicity.

A triple consists out of a subject, a predicate, and an object. Triples can be
connected to each other to form a path expression which makes the use of triples
both flexible and expressive. Representing actions in the form of triples facilitates
the use of powerful path expressions which enables the use of both simple (single
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triple) and more complex (multiple triples, path expression) actions. Using this
approach an action becomes a sequence of triples. These triples can then be used in
SPARQL (Prud’hommeaux & Seaborne, 2008) queries, because a SPARQL query
essentially consists of triples.

Human intervention is needed to supervise the ontology learning (i.e.,
knowledge base updating) process (Aussenac-Gilles, 2005), since NLP is error
prone, and therefore humans are needed to validate the result. However, NLP is
suitable for pruning large corpora of texts, thereby extracting relevant information.
This information can serve as a basis for suggestions on how to identify relevant
events and subsequently update a knowledge base with the events effect. These
suggestions should then be validated by the user, thereby creating a semi-
automated information extraction framework.

3 Event Rules

Our ontology learning framework uses rules to find events, and executes actions
based on these events. Event detection is based on automatically scanning news
headlines for specific lexico-semantic patterns and validation by the user. The
execution of actions after detecting events allows users to use cause-and-effect
reasoning in the ontology update process. An event, e.g., one company buys
another company, causes one or more changes in the real world. For instance, the
products of two companies do no longer compete with one another, the bought
company ceases to exist in its old form, etc. Using our rule syntax, users can model
these events and the resulting changes, thereby creating an information extraction
system able to detect relevant events and correspondingly update the existing
knowledge.

We make use of an OWL ontology to store the rules, because this enables easy
integration with already existing ontologies. We have formulated a rule syntax,
which facilitates the use of classes from other ontologies in the construction of
lexico-semantic patterns defining the events. A rule consists of two parts: a pattern,
which can have multiple lexical representations, and one or more actions, which
can be executed once the pattern has been matched. In terms of first order
logic the pattern is the antecedent, and the actions are the consequents. We now
continue to describe the syntax and semantics of patterns and actions.

3.1 Lexico-Semantic Patterns

The lexico-semantic pattern of a rule is used to mine text for the occurrence of
a specific event. Such a pattern has a triple format and consists of a subject,
a relation, and an optional object. The subject and the object are the syntactic
arguments of the relation, which describe the possible participants in the event.
In our implementation, the subject and object are OWL classes that reside
in the ontology and focus on information extraction and not learning. The
OWL individuals (i.e., instances) of these classes are the possible participants
in the event. The relation is an OWL individual of the predefined OWL class
kb:Relation. The object is optional, because there are situations in which only
a subject and a relation are enough to trigger an action. An example of such a
pattern is shown in Fig. 1.



Semi-Automatic Financial Events Discovery 7

Figure 1 Lexico-semantic pattern example

[kb:Company] kb:goes_bankrupt

Multiple lexical representations describing the same event can be derived
from the same pattern. These representations are used in the pattern matching
process, which is done in several consecutive steps. First of all, the pattern that
is associated with a specific rule is retrieved. Then, all the semantic classes
are substituted by the participants which they describe (i.e., their instances or
concepts). The third step substitutes both the participants (subject and object)
and the relation for all the lexical representations by which they are denoted. We
illustrate this process with an example pattern, which we call the buy pattern.
This pattern is depicted in Fig. 2.

Figure 2 Lexico-semantic pattern for buy events

[kb:Company] kb:buys [kb:Company]

In this pattern, [kb:Company] is the URI of a class in the OWL ontology and
we define instances of the class with [ and ]. Furthermore, kb:buys stands for
the lexical representation of the predicate and is the URI of an individual of
type kb:Relation in this ontology. After this pattern has been retrieved from
the rules ontology the second step of the process replaces [kb:Company] by all
class instances. If there are three companies in the ontology, which are kb:Roche,
kb:JohnsonAndJohnson, and kb:AkzoNobel, the patterns as demonstrated in
Fig. 3 are created.

Figure 3 Resulting patterns of lexico-semantic pattern expansion for subject/object

kb:Roche kb:buys kb:JohnsonAndJohnson

kb:Roche kb:buys kb:AkzoNobel

kb:JohnsonAndJohnson kb:buys kb:Roche

kb:JohnsonAndJohnson kb:buys kb:AkzoNobel

kb:AkzoNobel kb:buys kb:JohnsonAndJohnson

kb:AkzoNobel kb:buys kb:Roche

This step results in several patterns which are all constructed using OWL
individuals, which all have one or more lexical representations. The next step is to
substitute the OWL individuals for their different lexical representations. In our
case we assume that the companies have only one lexical representation, and that
the kb:buys relation has two lexical representations: “buys” and “acquires”. This
step results in the lexical representations of the buy pattern presented in Fig. 4.

All these lexical representations can then be used in mining the corpus for the
occurrence of the pattern. If one occurrence of a pattern is found (i.e., we found an
instance of the buy event), it is interpreted as an indicator of a possible change in
the real world. However, one indicator is not a good basis for event identification.
Therefore, we construct a mechanism that gathers several different occurrences
of the same pattern. These different occurrences should be from heterogeneous
sources – e.g., different news feeds – and they should also be in a specific time
span. If, for example, different news feeds contain news items in which the buy
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Figure 4 Resulting lexical representations of lexico-semantic pattern expansion for
predicate

Roche buys Johnson & Johnson
Roche acquires Johnson & Johnson
Roche buys Akzo Nobel
Roche acquires Akzo Nobel
Johnson & Johnson buys Roche
Johnson & Johnson acquires Roche
Johnson & Johnson buys Akzo Nobel
Johnson & Johnson acquires Akzo Nobel
Akzo Nobel buys Johnson & Johnson
Akzo Nobel acquires Johnson & Johnson
Akzo Nobel buys Roche
Akzo Nobel acquires Roche

pattern for Roche and Akzo Nobel is recognized, this is a very strong indicator
that an event occurred, because the more occurrences of a specific identified event
in news headlines, the higher the likelihood the event has actually happened.

Based on identified occurrences, the proposed changes can be shown to the user
for validation. It is up to the user to validate a certain identified event based on
the news items in which the event was found. If the user confirms the event, our
framework automatically executes the appropriate actions. After the execution of
the actions the ontology is updated, thereby reflecting the changed reality.

Having an up-to-date ontology improves the information extraction process in
the next run. For instance, a company that is not included in the knowledge base
yet – e.g., Organon – can be discovered by the pattern in case it is for instance the
object of a buy event. After updating the ontology new events can be identified,
because Organon is now known as a company, and thus events with Organon as
subject are also discovered.

3.2 Update Actions

As stated earlier, the rule-based information extraction framework which we
propose uses actions to facilitate the event-triggered ontology updates. One or
more update actions are associated with a pattern to form a rule, which can
be executed once the pattern is found. The goal of these actions is to enable
knowledge engineers and domain experts to express their knowledge in a simple
yet expressive way by combining actions with patterns. To be able to make use of
these actions, their syntax and semantics must be defined.

We can distinguish between two kinds of update actions: add actions and
remove actions. Both of these actions either apply to an OWL individual or
an OWL property. This basically means that there are four different types of
actions: adding an individual, adding a property instance, removing an individual,
and removing a property instance. Because of the in Section 2 mentioned
drawbacks of alternatives like SWRL (Horrocks et al., 2004) and self-defined
syntaxes, as well as the high compatibility with existing Semantic Web standards
of the triple paradigm, we opt for the usage of the latter for action rule
definition. Update actions are defined as a sequence of triples, which are used
in SPARQL (Prud’hommeaux & Seaborne, 2008) queries. For example, removing
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and creating a property instance can be done analogous to the code (SPARQL
templates) depicted in Figs. 5 and 6, respectively.

Figure 5 Simple SPARQL template remove query

REMOVE <subject> kb:hasCEO ?x

Figure 6 Simple SPARQL template add query

CONSTRUCT <subject> kb:hasCEO <object>

In order to create more expressive path expressions a WHERE clause can
be used, which is exemplified in the code snippet from Fig. 7, which depicts an
action where any kb:competesWith property instance between subject and object
products is removed.

Figure 7 Advanced SPARQL template remove query

REMOVE ?x kb:competesWith ?y

WHERE

{

<subject> kb:hasProduct ?x

<object> kb:hasProduct ?y

}

These examples are not SPARQL queries, but SPARQL templates to be
instantiated at run-time. The <subject> and <object> are to be replaced with
the subject and object matches by the lexico-semantic pattern. This automatically
happens when the action is being executed. It should be noted that the actions
order is of importance for update execution. The order in which actions are
specified is given by the designer so that the desired updates on the ontology are
implemented. For example, a rule of thumb is that delete actions should precede
insert actions as the opposite ordering of actions would possibly remove the new
information from the ontology. No special algorithms are employed in order to
determine the correct order of updates, as at the moment, our update actions have
limited complexity.

SPARQL can be used for implementing the actions using the convenient triple
format. SPARQL supports the use of a CONSTRUCT clause, and a WHERE
clause, together with the use of the triple format. Based on these factors SPARQL
is ideal for implementing the add actions (i.e., add individuals and add property
instances). The problem with a SPARQL implementation lies in the fact that
at this moment SPARQL does not support removal operations. This means that
it is impossible to use SPARQL for the removal of individuals and properties.
There are plans for adding removal functionality to SPARQL in the future by
means of SPARQL/Update (Seaborne & Manjunath, 2007), which is already being
implemented in Jena (McBride, 2002) and ARQ (Seaborne, 2010). We have added
these SPARQL extensions to the SPARQL templates. Recent developments in
SPARQL have lead to SPARQL 1.1 (Harris & Seaborne, 2010) and a new SPARQL
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1.1 Update (Schenk & Gearon, 2010), which also allow for aggregates, subqueries,
negation, expressions in the SELECT clause, and ontology updates. Incorporating
these new functionalities into this research is subject of future work.

4 Rule Engine

This section presents our rule engine able to execute the event rules. The rule
engine supports several actions: mining text items for patterns, creating an event if
a pattern is found, determining the validity of an event by the user, and executing
appropriate update actions if an event is valid.

The engine consists of multiple components, i.e., a rule editor, which is
described in Section 4.1, an event detector, which is presented in Sections 4.2
and 4.3, a validation environment, which is explained in Section 4.4, and also an
action execution engine which is discussed in Section 4.5.

Using the editor, the user can construct the event rules. The event detector
is used for mining text items (in our case news item headlines from RSS feeds)
for the occurrence of the lexico-semantic patterns of the event rules (i.e., the
event detector mines text items for occurrences of events). Using the validation
environment, users are able to determine if the found events are valid. They can
also modify the events in case the event detector made an error. If an event is
validated the action execution engine is used to perform the updates, associated
with the rule used for finding the event.

4.1 Rule Editor

The rule editor in our application allows knowledge engineers to construct the
event rules which are used in the information extraction process. Using this editor,
relations can be created and patterns can be formulated, based on the domain
ontology. Fig. 8 shows the user interface which is used when the users want to add
or modify relations. Using this interface, relations and their lexical representations
(synonyms) can be created and modified. Each relation is an individual of the class
kb:Relation in our knowledge base. This class contains all the relations for which
the user can define event rules.

Figure 8 The rule editor, showing the interface for editing relations
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Figure 9 The rule editor, showing the interface for editing lexico-semantic patterns

Fig. 9 shows the user interface for creating and modifying the lexico-semantic
patterns. Through this interface the pattern of the rule can be created by choosing
a subject, a relation, and an object. In this figure the buy rule is depicted, which
describes how a buy event can be found.

Selecting subjects and objects is done using an interactive tree of the concepts
and concept relationships of the domain ontology, as shown in Fig. 10. This tree
lets the user browse intuitively through the ontology structure because of its visual
support, without requiring an extensive knowledge of ontologies for the user.

We have also implemented an editor for the update actions that are associated
with the event rules. Fig. 11 shows the user interface which is used to create and
modify these actions. In this figure the instruction to remove any competesWith

Figure 10 The rule editor, showing the interface for choosing concepts
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Figure 11 The action editor

property instance between products of the companies is depicted. The action editor
allows the user to specify what kind of action (s)he wants to create (add or delete).

Subsequently, the main clause and the WHERE clause of the action can be
created. The main clause contains the triples that are to be created, altered, or
removed. These triples contain variables as subject or object, which are defined
in the WHERE clause. Together, the main and WHERE clause form the entire
instruction set for a specific add or remove action.

4.2 GATE Pipeline

The actual pattern matching for event detection is done using GATE (General
Architecture for Text Engineering), which is an environment supporting the
research and development of language processing software (Cunningham et al.,
2002). GATE provides its users with numerous components (called resources),
which can be used to construct a language processing application. It also allows
its users to develop their own components or to extend the existing ones. In our
framework, each news item will be pushed through this pipeline in order to check
whether one of the lexical representations of an arbitrary lexico-semantic pattern
of a rule can be matched.

The GATE pipeline, as depicted in Fig. 12 is comprised of several components,
some of which are distributed with GATE by default, whereas others are custom-
made by third parties or by us. The used default GATE components are Document
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Figure 12 The GATE pipeline

Reset, ANNIE English Tokenizer, ANNIE Gazetteer, ANNIE Sentence Splitter,
ANNIE Part-Of-Speech (POS) Tagger, ANNIE Named Entity (NE) Transducer,
and the ANNIE Ortho Matcher. A third party component is added to these default
components, i.e., Automated Processing of Ontologies with Lexical Denotations for
Annotation (Apolda) (Wartena, 2010). The last three components of the pipeline
are JAPE Transducers that we have created ourselves: Pre-pre-processing JAPE
Transducer, Pre-processing JAPE Transducer, and the Pattern Matching JAPE
Transducer.

The Document Reset component resets the document to its original state
by removing all the annotation sets and their corresponding annotations. An
annotation set contains multiple annotations and each annotation has multiple
instances. An example of an annotation is “Sentence”, which has all sentences in a
text as its instances. Another example is “Organization”, to which all organizations
in the text that are identified by GATE are connected as instances. An annotation
set is used to group several annotations into one set. These annotation sets can
be used to separate annotations which are not related. The Document Reset
component is used at the beginning of the pipeline to remove all old annotations.

The ANNIE English Tokenizer component splits the text into simple tokens
such as punctuation, spaces, numbers, and words of different types (e.g., words in
uppercase and lowercase). The English Tokenizer consists of a normal tokenizer
and a JAPE transducer. This transducer is used to concatenate various tokens to
create constructs like “50’s”, and “don’t”. We make use of the alternate rule set
for the ANNIE English Tokenizer, which is also distributed with GATE. When
using this alternate rule set, the tokenizer recognizes hyphenated words better.
This means that words like “Sanofi-Aventis” are annotated as one token. Because
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of the tokenization, more advanced analysis can be performed in components later
on in the GATE pipeline, e.g., by Apolda.

The ANNIE Gazetteer is used in order to classify certain types of words, such
as for instance cities, organizations, countries, and dates. The gazetteer contains
lists of words for which a major type, and an optional minor type are defined.
In case words on this list are identified in the text, they are annotated with
their corresponding major and minor types. The major type is used for providing
general information about the annotation, whereas the minor type provides a
more detailed description about the annotation. For example, an organization is a
more general form of a company. Once the text is annotated using the gazetteer,
JAPE grammars match all organizations by specifying the general major type
kb:Organization. All companies are matched by specifying the more specific
minor type kb:Company.

The ANNIE Sentence Splitter is used to split the text into sentences, which
are subsequently used by the ANNIE POS-tagger (Hepple, 2000). This tagger is a
modified version of the Brill tagger (Brill, 1992). It provides Part-Of-Speech (POS)
tags as an annotation for every word or symbol in the text. POS-tags can be used
to identify verbs, singular nouns, plural nouns, adjectives, etc.

The ANNIE Named Entity Transducer (or Semantic Tagger) makes use of
annotations assigned in earlier phases. Based on these annotations named entities
can be found and annotated. For example, the two successive words “Larry”, and
“Page” are annotated together, thereby creating the named entity “Larry Page”
that is annotated as type kb:Person. Using the NE transducer, new organizations,
persons, locations, and dates can be found. Companies are a specific type of
organization, so they can also be found.

The ANNIE Ortho Matcher (also known as the Orthographic Coreference
component or NameMatcher) is used for adding identity relations between named
entities found by the Named Entity Transducer. Using the Ortho Matcher strings
that refer to the same thing can be found, e.g., “IBM” and “Big Blue” both refer
to the company IBM.

Apolda (Wartena, 2010) is a component which has similarities with the ANNIE
Gazetteer. The biggest difference lies in the fact that Apolda uses terms from
an ontology to classify words instead of gazetteer lists. Apolda searches the text
for occurrences of OWL annotation properties – these are the concept lexical
representations – of the classes and instances of an ontology. The found matches
are annotated with the name of the OWL instance (or class) against which
the piece of text is matched. Using this component text can be mined for the
occurrences of terms from an OWL ontology.

After annotating the text with Apolda, each term in the text that corresponds
to an OWL class or OWL individual is labeled with the corresponding class
or individual. However, in our matching process we only want to use OWL
individuals, and thus we employ a JAPE transducer for pre-pre-processing, which
removes all class annotations from the annotation set.

Each rule is associated with a lexico-semantic pattern, which has multiple
lexical representations and is used to identify events in text. In order to be able
to find the lexical representations of a lexico-semantic pattern, this pattern is
dynamically converted to two JAPE grammars each time a GATE pipeline is being
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executed. These two JAPE grammars are executed successively in two separate
phases.

The grammar in the first phase (the pre-processing phase) is used for copying
all relevant annotations to a temporary annotation set. By using a temporary
annotation set for the relevant annotations, the next phase automatically discards
the non-relevant annotations, because these non-relevant annotations are not
copied to the temporary annotation set. Only items that occur in the pattern
of the rule are relevant, so for a buy rule (depicted in Fig. 2) only company
annotations and annotations that reflect the buy relation are copied to the
temporary annotation set.

The second phase is all about pattern matching. The JAPE grammar is
employed for matching a pattern based on the annotations in the temporary
annotation set created in the previous phase. In this pattern matching phase, the
JAPE grammar is used to identify full or partial matches of the lexico-semantic
pattern based on the relevant annotations.

4.3 Event Detector

In order to query the news items for occurrences of events, we mine all the news
items in the RSS feeds that have not yet been processed by our event detector,
which is based on the GATE pipeline. If a lexico-semantic pattern associated with
an event rule is found in the text, we create an event instance in case it does not
already exist. Provided that an event instance is found, the news item is added to
the existing event instance. For example, we might find the three news items from
Fig. 13.

Figure 13 Example of possible relevant news items for buy events

Pharmaceuticals giant AstraZeneca buys MedImmune for $15.6 billion
QIAGEN Signs Agreement for the Acquisition of eGene
AstraZeneca to buy MedImmune

In the latter figure, italic texts denote companies identified by the user, whereas
bold texts denote relations identified by the user. We parse these news items with
respect to the buy pattern depicted earlier in Fig. 2.

The pattern matching process first identifies all relevant concepts in a news
item, with respect to the subject and the object of a pattern. In the case of the
previous three news items and the buy pattern this means that all the relevant
companies are found based on their lexical representations stored in the ontology.
The news items are also queried for the occurrence of unknown companies, which
are not yet stored in the ontology. This is done using the ANNIE Gazetteer, the
ANNIE Named Entity Transducer, and the ANNIE Ortho Matcher, which are all
GATE components. Using these components, the engine automatically identifies
unknown companies, thereby learning at the instance level of the ontology.

After that, the event detector looks for the presence of a relevant relation.
In the case of the buy pattern the event detector tries to locate a lexical
representation of the buy relation in the news item. If both a subject, and an
object together with a relation are found in the news item, a new event is created,
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if this does not already exist. If the event already exists, the news item is added
to the existing event.

Based on the buy pattern previously introduced, our tool identifies two
events, depicted in Fig. 14. In the latter figure, the italic texts denote lexical
representations of companies as found by the event detector. The non-italic text
denotes a company that is not recognized by the event detector. Now the first
event is a full match, because we have identified both a subject and an object. The
second event is a partial match, because we were only able to identify a subject
(the company QIAGEN ), and the buy relation (based on its lexical representation
“Acquisition of”).

Figure 14 Example of identified relevant news items for buy events

AstraZeneca
buys→ MedImmune (with news items #1 and #3)

QIAGEN
buys→ eGene (with news items #2)

The buy pattern requires both a subject and an object to be valid, so the
second event can not be validated automatically at this point, because the object
is missing. However, when the user reviews the event, (s)he might recognize eGene
as being a company based on both his own knowledge and the context of the news
item in which eGene appears. Based on this event (and the corresponding news
item headline) the user can add eGene to the ontology by manually validating
the event, after which this event has both a subject (QIAGEN ) and an object
(eGene), making the event now a full match.

Ideally, eGene would be recognized by GATE automatically as an unknown
company. However, at this point we are not capable of recognizing all unknown
companies automatically. GATE recognizes companies based on Gazetteer lists
and Java Annotation Patterns Engine (JAPE) rules (Cunningham et al., 2002).
These rules look in the text structure. If, for example, a company is found in
an enumeration together with other companies, GATE is capable of recognizing
the unknown company as a company. Based on the sentence “Profits Google,
Microsoft, and eGene increase.” GATE is able to deduce that “eGene” is a
company, because of its context. Using the short length RSS news item headlines
GATE is not always capable of identifying unknown companies due to the lack of
text structure.

4.4 Event Validation

Identified events are stored in an ontology, together with the news items in which
they are found. In the validation environment the user is able to review all the
identified events. The user is able to validate both full and partial matches. Once
an event is validated, the associated actions are executed, thereby modifying the
ontology based on the identified event. In case of a validation of a partial match
(containing unknown concepts), not only the associated actions are executed, but
also the concepts that were unknown up until now are added to the knowledge
base automatically.

Fig. 15 gives an overview of the validation environment. A colored row indicates
an identified event that has not yet been validated by the user, whereas a white



Semi-Automatic Financial Events Discovery 17

Figure 15 The validation environment of the rule engine

row indicates that the user has either confirmed or rejected the validity of a specific
identified event. The italic subjects and objects of identified events are concepts
which are unknown at this point; they are discovered in the news items by the
GATE pipeline but are not present in the domain specific knowledge base.

4.5 Action Execution Engine

If a user validates an event the appropriate actions should be executed. This is
taken care of by the action execution engine which is based on four steps: retrieving
the appropriate actions, instantiating the <subject> in the actions’ SPARQL
templates for the actual subjects of the events, substituting the <object> in the
actions for the actual objects of the events (if there are any), and finally executing
the actions using a SPARQL engine.

The actions associated with the event rule whose pattern is matched by
the event are first retrieved from the rule base. An example of such an action
can be found in Fig. 16. This action is associated with the buy rule. The
kb:competesWith property instance between two products whose producers do no
longer compete with each other (because one bought the other) is removed. It
should be noted that the actions need to be ordered correctly in order to prevent
erroneous data to be left in the knowledge base.

The template action illustrated in this figure can not be executed directly.
Before the action is ready for execution, the <subject> and <object> must
be substituted for the actual subject and object as found in the event. If for
example Akzo Nobel buys ICI, the action will look like the one depicted in
Fig. 17 after substituting the subject and object with the appropriate names.
This specific action is executed using ARQ (Seaborne, 2010) that supports
SPARQL/Update (Seaborne, 2010).
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Figure 16 Abstract action before substitution

REMOVE ?x kb:competesWith ?y

WHERE

{

<subject> kb:hasProduct ?x

<object> kb:hasProduct ?y

}

Figure 17 Action after substitution

REMOVE ?x kb:competesWith ?y

WHERE

{

kb:AkzoNobel kb:hasProduct ?x

kb:ICI kb:hasProduct ?y

}

5 Evaluation

We now continue with the evaluation of the effectiveness of the rule engine. First,
we introduce the data set and performance measures used in Sections 5.1 and 5.2,
respectively, after which we discuss the events used in our evaluation in Section 5.3.
Finally, Section 5.4 elaborates on our experimental results.

5.1 Data Set

In order to validate the results of the learning process, we compare the (several
hundreds of) events identified by the rule engine with those identified by domain
experts, based on the same set of 1,736 news items headlines, which are retrieved
from several RSS news feeds (scraped from MarketWatch, Yahoo!, and Reuters).
Subsequently, a data set of news items received from Reuters via Citigroup is used.
All these news items are aggregated into one data set NI, which is used in our
experiments on effectiveness of the proposed approach.

It should be noted that the quality of the event detector is greatly dependent
on its inputs. This means that without a high quality knowledge base, which
contains the proper lexical representations for both the concepts and the
relations, the amount of successfully identified events will dramatically decrease.
Therefore, we construct a detailed and domain-specific initial knowledge base
that is based on the inter-expert agreement of three domain experts, containing
approximately fifty distinct classes and hundreds of individuals and properties.
The process of developing the ontology is an incremental middle-out approach.
First, the most salient concepts are defined and then these are refined using
generalization/specialization towards the top/bottom of the ontology. We validate
our domain ontology using the OntoClean methodology (Guarino & Welty, 2002).
Furthermore, the clarity of the parsed text is also important. In case the text that
is being mined is very unstructured, it is hard to match patterns. When using an
adequate knowledge base and a well-formed English text, we expect that the event
detector performs fairly well.
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5.2 Performance Measures

Performance evaluation of the ontology learning process is a non-trivial task in this
field of research, as there are no commonly accepted predefined measures (Schutz
& Buitelaar, 2005). We use the following (well-known and relevant) measures:
accuracy (A), precision (P ), recall (R), and F1. Moreover, we define a measure for
usefulness U . Using these measures we evaluate the result of the rule engine ED

against a reference standard ERS , as defined by our domain experts. This reference
standard is a set of events created by manually identifying events in the data set.
Each event is supported by one or more headlines which denote this event.

Using ECI as the set of correctly identified events and ET as all identified
events by either the event detector or the domain expert (ED ∪ ERS), we can
denote the accuracy A as:

A =
| ECI ∪ (NI − ET ) |

| NI |

=
| (ED ∩ ERS) ∪ (NI − (ED ∪ ERS)) |

| NI |

=
| NI − (ED 4 ERS) |

| NI |
,

where ED 4 ERS = (ED − ERS) ∪ (ERS − ED). Subsequently, we use the
precision measure P for determining the amount of correctly classified news
items by the event detector. We define P as the ratio of the number of correctly
identified items ECI and the number of identified items ED:

P =
| ECI |
| ED |

.

The recall measure R is used for calculating the portion of news items in the
data set that are correctly classified by the event detector. This ratio of ECI and
ERS (i.e., events identified by the domain expert) can be denoted as:

R =
| ECI |
| ERS |

.

There is a trade-off between precision P and recall R, and therefore the F1

measure is needed. The F1 measure is applied to compute an even combination
of precision and recall. When improving the event detector, the F1 measure is
the measure that should be maximized, as it takes both precision and recall into
account. Values of F1 can be calculated as:

F1 =
2× P ×R

P + R
.

Finally, we also evaluate the degree of usefulness U of each run. It is determined
by dividing the amount of useful news items belonging to events identified by
the event detector (EU ) by the amount of news items belonging to all the events
identified by the event detector (ED). Hence:

U =
| EU |
| ED |

,
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where EU = ECI ∪ {e ∈ ED | e is partially valid}, since useful events can either
be valid or partially valid. The partially valid events, i.e., valid events which have
at least the subject or object from the gazetteer, named entity transducer, or
ontology, and the subject or object are missing (as opposed to valid events in which
both subject and object are recognized by gazetteer, named entity transducer, or
ontology), are quite useful, because the domain expert can complete them and
make them valid (with respect to the ontology) with a minimum amount of effort.
The domain expert has only to identify the missing valid subject or object.

5.3 Events

In our experiments, we will focus on finding events associated with the previously
discussed buy rule (i.e., buy events as defined in Fig. 2), as well as a rule in
the political domain, i.e., a rule indicating the visit of a (highly placed) person
– a politician – to a country, as depicted in Fig. 18. In order to enable testing
on a different domain, we add political concepts (e.g., [kb:Politician] and
[kb:Country]) to our ontology.

Figure 18 Lexico-semantic pattern for visit events

[kb:Politician] kb:visits [kb:Country]

Hence, we do not only evaluate the engine performance on financial news items
extracted from our RSS feeds, but also on political news messages originating
from the same sources, in order to be able to assess the applicability of our
approach to other domains. We choose to use these events in the evaluation process
because they are the most frequently encountered events in our data set. As there
are no major structural differences between these events for the field of finance
and politics and other events in these fields, we focus on evaluating only the
representative events.

We evaluate three different processing runs using our rule engine. In the first
run, the rule engine looks for the patterns that are depicted in Figs. 2 and 18 in
a strict manner. This means that the rule engine only looks for known companies,
persons, and countries, and tokens which are explicitly annotated by GATE as
such.

For the second run, we relax the restrictions on the pattern in such a way that
the patterns also include tokens that are annotated by GATE as an organization,
i.e., not specifically a company, or as unknown. GATE annotates tokens as
unknown in case it knows the token is a named entity (e.g., in case the token
is capitalized), but it does not know its specific type. Please note that at least
the subject or object should be from the gazetteer, named entity transducer, or
ontology.

Finally, the third run combines the approaches of the first and second run. The
relaxed pattern is applied with the addition that either the subject or the object
of the found event is a known company, person, or country from the ontology. This
extra condition on either the subject or the object combines the relaxed pattern
with a more strict approach.
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5.4 Experimental Results

This section evaluates not only the performance of the lexico-semantic patterns,
but also of their lexico-syntactic equivalents. Creating lexico-semantic patterns
using our tool requires little effort, as the concepts used in the patterns are
conveniently described in an ontology. Table 1 displays the pattern creation times
in seconds for both the financial and the political patterns. Here, we distinguish
between lexico-semantic and lexico-syntactic variants. For both patterns, it holds
that equally well-performing lexico-semantic patterns are created about ten times
faster than their lexico-syntactic equivalents. This is due to the fact that one has
to include all synonyms, instances, etc., in the lexico-syntactic patterns that are
automatically incorporated into the lexico-semantic patterns.

The difference in creation time is also reflected in the performance of lexico-
semantic patterns when compared to lexico-syntactic patterns. With a given fixed
creation time of five minutes, lexico-syntactic patterns seem to perform worse
within both domains, as supported by Tables 2 and 3. Table 2 gives an overview
of the calculated values for each of the previously defined measures for each run
(i.e., using strict, relaxed, and hybrid lexico-semantic patterns). This table shows
that applying a hybrid lexico-semantic pattern yields the best results in terms of
accuracy, precision, and recall, whereas the usage of a strict pattern results in the
worst results. Usefulness of patterns is relatively high for both lexico-syntactic and
lexico-semantic patterns in all runs, but overall, lexico-semantic patterns perform
better.

For all runs the overall accuracy is very good. The accuracy of the strict and
relaxed patterns is almost equal, whereas the accuracy of the hybrid pattern is
slightly better. These high and almost equal values are caused by the fact that
most of the news item headlines are not associated with a buy event and thus the
rule engine has successfully ignored a large portion of these news items in each run.
When applying a relaxed pattern the event detector is capable of recognizing more
companies than is the case when using a strict pattern. However, this results in
some events that are out of the domain, e.g., “Thomson buys Reuters”. Although
such an event is correctly recognized we do not want to use it in our information
extraction framework, because it learns facts which are not in our domain, i.e.,
both Thomson and Reuters are not present in our domain specific knowledge base.
Therefore we consider these events to be invalid in our context. When using the
hybrid pattern, we have the restriction that either the subject or object must be

Table 1 Pattern creation times (in seconds) for lexico-syntactic and lexico-semantic
patterns within the financial and political domains

Domain Pattern Creation time
Finance Lexico-Syntactic 528 seconds

Lexico-Semantic 63 seconds
Politics Lexico-Syntactic 820 seconds

Lexico-Semantic 76 seconds
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Table 2 Experimental results within the financial domain

Lexico-Syntactic Patterns Lexico-Semantic Patterns
Measure Strict Relaxed Hybrid Strict Relaxed Hybrid

Accuracy 0.92467 0.93065 0.95319 0.95334 0.95392 0.97005
Precision 0.18670 0.37862 0.61124 0.21795 0.38384 0.58065

Recall 0.10839 0.18677 0.20467 0.22667 0.50667 0.48000
F1 0.13716 0.25014 0.30666 0.22222 0.43678 0.52555

Usefulness 0.65504 0.54137 0.78588 0.73077 0.58586 0.80645

a known company, thereby ensuring that the event is always in our domain. This
reduces the error rate of the event detector and thus increases accuracy.

On our financial news, relaxed and hybrid patterns obtain higher precision
than strict patterns. This is due to the fact that many company synonyms are not
included (e.g., abbreviations or variations of “Incorporated”, such as “inc”, “inc.”,
“Inc”, “Inc.”, “, Inc”, “, Inc.”, etc.). In our experiments, this occurs frequently,
so by relaxing the patterns we increase precision. The hybrid patterns also stand
out in precision. The same rationale as for the accuracy applies here. The event
detector recognizes more companies with the relaxed pattern, and thus is able
to identify events that otherwise would not have been recognized or that would
have been partial matches (because the subject or object could not be found).
However, because of the restriction that either the subject or the object must be
present in the knowledge base, we reduce the amount of invalid matches (due to
the recognition of events outside our domain).

Applying the hybrid lexico-semantic pattern does not always result in better
values for each measure, as can be derived from the recall measure. Here, the
relaxed pattern performs slightly better than the hybrid pattern. When using the
relaxed pattern, the event detector is capable of recognizing more events than with
the strict pattern. This results in a higher recall for the relaxed run. The hybrid
pattern also allows for more events to be identified than the strict pattern, but
results in a slightly lower recall because of the restriction that either the subject or
the object must be in the knowledge base. However, when combining the precision
and recall measures into the F1 measure, we observe that the hybrid pattern
outperforms both the relaxed and strict pattern.

Table 3 Experimental results within the political domain

Lexico-Syntactic Patterns Lexico-Semantic Patterns
Measure Strict Relaxed Hybrid Strict Relaxed Hybrid

Accuracy 0.88389 0.75960 0.82802 0.91304 0.82609 0.86957
Precision 0.76039 0.44105 0.57614 0.77778 0.47368 0.64286

Recall 0.35205 0.48795 0.44010 0.58333 0.75000 0.75000
F1 0.48128 0.46331 0.49901 0.66667 0.58065 0.69231

Usefulness 0.84240 0.64755 0.73181 0.88889 0.68421 0.78571



Semi-Automatic Financial Events Discovery 23

Finally, we observe that the identified events (and associated news items)
are highly useful when using the hybrid pattern, followed by the strict pattern,
whereas the relaxed pattern clearly performs worse than the other two patterns.
The reason for the latter observation is that the usage of the relaxed pattern
introduces a lot of out-of-domain events, which we consider to be invalid. The
hybrid pattern solves this problem due to its restriction that either the subject or
the object of an event must be present in the knowledge base.

As shown in Table 3, compared to the financial domain, strict patterns are
operating much better within the political domain. Again, lexico-semantic patterns
outperform lexico-syntactic patterns with a limited construction time of five
minutes. Also, in both cases the hybrid patterns yield promising results. High
accuracy and usefulness values, which also holds for the financial domain, are
verified by the results presented in Table 3. Differences between the results of
both domains can be explained by the characteristics of the knowledge base and
the patterns. Strict patterns only identify events when both subject and object
(politician and country) can be matched to concepts in the knowledge base. In
case of countries and politicians, this easier than with companies.

As our knowledge base contains many (not all) politicians and all countries,
there are not many out-of-domain errors here. Generally, politicians are labeled as
persons, and all countries are recognized. Therefore, on average, we achieve better
scores within the political domain. Mainly, errors occur more often in the relaxed
and hybrid patterns, e.g., when “visit” is used as a noun. Furthermore, some
errors are made in case of complex terms beginning with country names, e.g., “US
Open”. Also, the snippet “Iran visit Bashar al-Assad” will not be recognized by
any pattern, as the current patterns are not flexible enough to cope with inversions.

On the other hand, relaxed and hybrid patterns do discover events such as
“The Queen visits Australia”. Even though there is no person to be recognized in
this pattern based on names, there is a reference to a person. This makes the event
difficult to discover by strict patterns, but relaxed and hybrid patterns are able to
identify these. Relaxed and hybrid patterns often fire in case there is no country to
be matched, but a city, a person, or a company not known in the knowledge base.
Due to this, precision and accuracy tend to be lower than is the case with strict
patterns. The relaxed and hybrid patterns often return many events. Because of
this, the recall is somewhat higher than the recall resulting from strict patterns.

While our experiments within the financial domain show that precision
increases when relaxing patterns, we observe the opposite effect within our political
domain. Precision decreases when using relaxed patterns, as many invalid events
are recognized. Names and countries do not have many variations, as in news
items, persons are frequently referred to using first and last names. Usually,
nicknames, popular language, etc., are rarely used in these contexts. Also, countries
do not have many different names. Therefore, invalid event recognition becomes
more of an issue as the knowledge base is sufficient for providing names to link
concepts to politicians and countries. The decrease of accuracies can also be
explained by this phenomenon.

In terms of usefulness, strict patterns seem to yield the best results, but hybrid
patterns also show similar usefulness. This is caused by the fact that the quality
of the relaxed patterns and (to a lesser extent) the hybrid patterns is lower, as
they frequently falsely identify events. Also, the obtained results for the political
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domain show that the usefulness of the hybrid patterns is lower than in de case of
the financial domain.

6 Conclusions

In this paper we have proposed the use of lexico-semantic patterns for financial
events extraction from RSS news feeds. This approach is implemented in a rule
engine with which one can query news feed headlines using patterns. These
patterns make use of financial ontologies, which leverage the existing lexico-
syntactic patterns to a higher abstraction level. Lexico-semantic patterns are able
to identify more events than lexico-syntactic patterns from corpora and can be
constructed with considerably less effort. Furthermore, we have developed and
presented rules based on lexico-semantic patterns, as well as actions that allow
updating of the domain ontology with the effects of the discovered events, causing
the domain ontology to reflect the most up-to-date information available on the
financial world. In our work, we make use of the triple paradigm that allows an
easy construction and understanding of rules by users.

The effectiveness of the proposed approach is measured using metrics, such
as the precision, recall, and F1 measures. We conclude that generally, the tool is
effective because of its high accuracy, i.e., it recognizes true negatives well. We
verified these results by testing on a different domain as well, i.e., politics. Also, we
evaluated the usefulness of the lexico-semantic patterns on both domains, which
yielded encouraging results.

For future research, we suggest a couple of directions. First of all, the event-
triggered actions which are now used for ontology updates can also be used for
other purposes. For example, we could send SMS messages or e-mail trader alerts
once certain events are identified, thereby automatically notifying users of the
occurrence of real-world events in a real-time manner. Secondly, currently, we
have been focusing on processing headlines from RSS feeds instead of entire news
items. The reason for this is that titles are usually well formulated and to the
point. Moreover, titles can be processed in a limited amount of time. However,
the drawback of this approach is that titles do not always contain all contextual
information that is needed for proper understanding, which is likely to be solved
by processing the entire news item. Therefore, future research into the possibilities
of processing entire news items is suggested.

Furthermore, it would be interesting to conduct research on event chains, as
usually, events are not isolated but they are part of a chain of events. For example,
if we observe a process that eventually results in one company buying another,
then in most cases this process is initiated by rumors on the interest of several
companies in buying a certain company. If these rumors turn out to be true, the
companies might engage in a bidding war. After this bidding war, the winner
acquires the company for sale. In most cases, each phase in this process results
in a flow of news items, which represent the successive events leading up to the
final buy event. It would be interesting to formulate such chains of events in order
to monitor the developments of specific domains over time. By identifying these
patterns of events, forecasting of events can be done (Milea et al., 2008; Frasincar
et al., 2010). If certain events appear, it is likely that other events also appear.
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Related future work might include recognizing the difference in the temporal
aspects of patterns (e.g., past tense, future tense, etc.) and using this accordingly
when updating the knowledge base. Also, one could consider adding full negation
support to the patterns. At the current moment, it is the user who decides if an
event has been correctly found and it needs to trigger updates to the ontology.
Hence, negations and temporal aspects are handled manually by either approving
or denying events and their ontology updates. Updating the framework by using
SPARQL 1.1 (Harris & Seaborne, 2010) and SPARQL 1.1 Update (Schenk &
Gearon, 2010) would be desirable, as these also allow for aggregates, subqueries,
negation, expressions in the SELECT clause, and update operations on RDF
graphs. Furthermore, it would be worthwhile to investigate event ranking based on
evidence. If an event is frequently identified, there is more evidence, and thus the
event is more likely to be true than is the case with less evidence.

Additionally, the action editor needs to be improved. Related future research
could include automatic pattern discovery, as currently patterns have to be
manually formulated by the user. Automating this process would improve the
usability of our solution. A possible approach might be to perform generalizations
based on co-occurrence analysis. By analyzing which class instances co-occur
frequently with certain relations, patterns can be formulated. Users can then
validate these patterns and associate actions to them. This approach should result
in (semi-)automatically generated rules that can be used in our rule engine.

Finally, the usage of powerful change patterns (Lösch et al., 2009) can be
subject to further research. The patterns introduced in this paper operate on text
and ontologies, while change patterns operate on graphs and ontologies. Perhaps
in future work we could use the output of lexico-semantic patterns as input for
expressive change patterns for ontology updating.
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