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ABSTRACT
One of the latest developments for the Semantic Web is
Google Rich Snippets, a service that uses Web page anno-
tations for displaying search results in a visually appeal-
ing manner. In this paper we propose the Automatic Re-
view Recognition and annOtation of Web pages (ARROW)
framework, which is able to identify reviews on Web pages
and to annotate them using RDFa attributes. The ARROW
framework consists of four steps: hotspot identification, sub-
jectivity analysis, information extraction, and page annota-
tion. We evaluate an implementation of the framework by
using various Web sites. Based on the evaluation we con-
clude that our framework is able to properly identify the
majority of reviews, reviewed items, and review dates.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—linguistic processing ; I.2.7 [Arti-
ficial Intelligence]: Natural Language Processing—text
analysis; I.7.m [Artificial Intelligence]: Document and
Text Processing—miscellaneous

General Terms
Languages, design, management

Keywords
Annotation, information extraction, Google Rich Snippets,
RDFa

1. INTRODUCTION
The World Wide Web is home to an ever increasing and

already vast amount of information. A large portion of this
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information is available in such a way that it is easy for
humans to comprehend it. For machines on the other hand
it is almost impossible to understand information contained
in the Web pages. One of the pillars of the Semantic Web
is to define the content of the Web pages semantically (i.e.,
as concepts with meaning) in order to make data machine
understandable. The ability of computers to automatically
process and interpret data will support new functionality on
the Web.

One of the latest functionalities added to the Web is
Google’s Rich Snippets. This is a service for Web page
owners to add semantics to their (existing) Web page us-
ing the semantic vocabulary provided by Google. Up un-
til now the vocabulary is rather limited in its number of
concepts (Person, Review, Review Aggregate, Product, and
Organization). Yahoo! has a similar service provided by
SearchMonkey which uses a collection of publicly available
vocabularies.

When a Web site has annotated its pages with Google’s
vocabulary, Google’s search engine will highlight the recog-
nized concepts and show a brief summary of the Web page
and the concepts’ attributes using visual cues. An example
of a review aggregate in Google Rich Snippets is shown in
Fig. 1. This figure depicts the search result of a sample Web
page that contains reviews about a resort & spa which are
annotated with Google’s vocabulary. Google has extracted
the annotated metadata about the reviews from this Web
page to display it in its search results. Such a search result
will stand out in a long uniform list of search results and it
is considered to be more likely that people will click on that
link.

Rich Snippets are only a small possibility of what an-
notated Web pages can do in the future. When sites are
annotated it is just a small step to more sophisticated and
advanced search capabilities. For example, when searching

Figure 1: An example of a Review Aggregate Rich
Snippet in Google search results.



for the company “Philip Morris”, with Rich Snippets one is
able to state that all results with “Philip Morris” as a per-
son should be ignored. Another possibility would be to let
Google search for a product within a certain price range with
at least a certain percentage of positive reviews.

If a Web site is built from structured data from a database,
annotating the Web pages is fairly straightforward. It would
be sufficient to identify its concepts in the generated pages
and add the attributes to the Web page while generating the
HTML output. Not all Web pages are built from databases
and thus pre-generation of annotations is not always possi-
ble. In these cases the Web pages must be annotated manu-
ally, which can be a very time consuming and tedious job. In
this paper, we discuss a method to automatically read and
annotate Web pages, using the necessary RDFa attributes
as defined in Google Rich Snippet’s vocabulary. An excerpt
of the RDFa used in the example in Fig. 1 is given in Fig. 2.

<div xmlns:v="http://rdf.data-vocabulary.org/#"
typeof="v:Review">

<span property="v:itemreviewed">
Garza Blanca Preserve Oceanfront Resort & Spa

</span>
<span property="v:reviewer">

Jane Doe
</span>
<span property="v:rating">

5 stars
</span>
<span property="v:dtreviewed">

21th March 2011
</span>
<p property="v:summary">

This is an absolutely beautiful hotel for the money.
Lovely property, architecture and landscaping.

</p>
</div>

Figure 2: A Google Rich Snippets annotation of a
Review entity, using the RDFa format.

In this paper, we propose the Automatic Review Recog-
nition and annOtation of Web pages (ARROW) framework,
which reads Web pages, identifies reviews, and annotates
the pages with the RDFa attributes defined by Google Rich
Snippets. Using algorithms based on heuristics, subjectivity
analysis, and entity recognition techniques, we implement
the framework in a tool that takes a URL as an input, and
outputs a Google Rich Snippets-compliant review page.

The remainder of this paper is organized as follows. First,
we will discuss related work in Sect. 2. Next, we introduce
the ARROW framework in Sect. 3, followed by details on its
implementation in Sect. 4. Subsequently, Sect. 5 presents a
performance evaluation on our algorithms. Finally, we draw
conclusions and discuss some directions for future work in
Sect. 6.

2. RELATED WORK
With the vast amounts of customer reviews available on

the Web, a great amount of research already has been done
on taking advantage of these rich information sources. Most
of this research is done in the context of opinion mining.
Several methods have been proposed for mining, summariz-
ing, and comparing reviews [6, 7, 10]. However, in contrast
to our goals, most of these algorithms aim to infer new in-
formation from existing reviews, whereas we aim to extend

the underlying HTML code by adding semantics after iden-
tifying information on the Web page.

Even though a lot of research has already been done on
information extraction from Web pages [4], there is little
work on extracting reviews from Web pages. These Web
information extraction systems work by means of a wrap-
per to extract the data from Web pages, and allow the user
to query this data. In this paper, we focus only on unsu-
pervised systems, as they can be fully automated and do
not require pre-annotated documents for training. Based on
the content of a Web page, an unsupervised method tries to
find a pattern on the Web page. This pattern can be a set
of recurring HTML tags or specific text strings.

Examples of unsupervised Web information extraction sys-
tems are RoadRunner [5], EXALG [1], DeLa [17], and
DEPTA [9]. To identify the attributes of the reviews, e.g.,
author, date, etc., these systems employ methods such as
person or date recognition. These methods can be divided
into tag-based approaches, text-based approaches, and hy-
brid approaches. The tag-based approaches derive a wrap-
per for the Web site based on the structural characteristics
of a Web page. Text-based approaches focus on the textual
content of a Web page. Lastly, the hybrid approaches are
a combination of the tag-based and text-based approaches
and thus contain elements of both methods.

2.1 Tag-Based Approaches
An example of a tag-based approach is EXALG, which

consists of two main phases: (1) equivalent class generation,
and (2) analysis. In the first phase, EXALG computes sets
of tokens with the same number of occurrences in all input
pages. These sets are called equivalent classes. For example,
in every HTML page the tags <html> and <body> usually
occur only once. These tags are therefore part of the same
equivalent class together with all other tokens that appear
only once in every page. The equivalent classes that occur
(multiple times) on multiple pages are most likely part of
the template that is used to construct the page. Therefore,
EXALG constructs its wrapper using the equivalent classes
that contain the elements with the highest occurrence.

2.2 Text-Based Approaches
Natural Language Processing (NLP) can also be used to

extract the relevant attributes from Web pages. It might not
be always the case that attributes such as rating or reviewer
name are clearly annotated using markup languages, but
instead are part of the review text. Another application
of NLP in our case would be to check whether or not data
records extracted by the Web information extraction system
are actually reviews. Named Entity Recognition (NER) is
a commonly used method for determining proper nouns in
text.

Named entity recognition, also known as entity identifi-
cation or entity extraction, is used for classifying elements
in text into predefined categories such as persons, organiza-
tions, quantities, time values, etc. There are two main tech-
niques used for NER systems, i.e., linguistic grammar-based
techniques and statistical models. Systems relying mostly on
the grammar-based techniques obtain a better precision but
at the cost of a lower recall and they are more time consum-
ing than the statistical systems. Statistical NER systems
on the other hand often need a large amount of manually
annotated data as training data. Previous research shows



that even the latest NER systems are quite brittle, meaning
that when the system is developed for one domain it typ-
ically does not perform well on others [13]. A lot of time
and effort is involved in making the system work properly
in a certain domain. This is true for both statistical and
grammar-based systems.

The latest versions of NER-systems have near-human per-
formance on English texts (on the specific domains they
are trained for). These systems, developed for the Mes-
sage Understanding Conference (MUC7), scored a 93.39%
for F1-measure whereas human annotators scored 97.60%
and 96.95% [11]. State of the art Java-based NER taggers
include the Stanford NER and the Illinois NER.

2.3 Hybrid Approaches
RoadRunner takes two sample Web pages to find struc-

tural and textual commonalities between them and subse-
quently uses these to generate the wrapper. Another method,
DeLa, starts with removing all the uninteresting data, such
has page headers, menus, page footers, etc. After this pro-
cess we obtain only the data-rich section which could po-
tentially contain data records (such as reviews). Finally,
DeLa looks for continuously repeating patterns on the page.
It then uses the pattern to find all the data records in the
data-rich section that matches this pattern. The third, and
last hybrid method that we investigate is DEPTA, which
consists of three steps. First of all, it creates a tag tree of
the Web page. This is similar to a Document Object Model
(DOM) tree but in the tag tree only tags are considered. Sec-
ondly, substrings for all child nodes in the tree that share
the same parent are compared. If two substrings are similar
to a certain degree, the nodes are labeled as data regions.
The last step handles situations where two data regions are
not followed right after each other.

2.4 Subjectivity Analysis
One could consider a review to be a written opinion of

a person about a certain subject, e.g., a product. Because
opinions are subjective, we can safely assume that reviews
have a substantially larger amount of subjective words in
them than an objective news message or an informational
piece of text would have. Subjective sentences can be defined
as sentences that express or describe opinions, evaluations,
or emotions [18]. Recently the computational treatment of
opinions, sentiment and subjectivity have attracted a great
deal of attention [12, 3]. It is useful for companies and Web
sites to create summaries of people’s experiences and opin-
ions extracted from reviews or just the review’s overall po-
larity (i.e, positive or negative). In this way, companies and
Web sites can easily access and analyze how people think
about certain products or services, without having to read
all the individual reviews.

Pang and Lillian [12] propose a system for classifying a
document as being a review or non-review. The functional-
ity of their framework is twofold: (1) it labels the sentences
in the document as either subjective or objective and dis-
cards the objective sentences, and (2) it applies standard
machine-learning classifiers (i.e., Naive Bayes and Support
Vector Machine-based polarity classifiers) to the subjective
sentences to identify their polarity (positive or negative).
This system prevents the classifier to consider irrelevant or
misleading text by eliminating sentences with no or too little
subjectivity.

Previous research efforts emphasize the difficulty of the
subjectivity mining task due to the wide variety of ways to
express emotions and the fact that a mix of objective and
subjective sentences can be used. Lexicon based techniques
use the sentiment of single words to determine the sentiment
of a sentence or a document. Machine learning techniques on
the other hand use features to determine sentiment. Often
used features are unigrams and part-of-speech data.

An unsupervised LightWeight subjectivity Detection mech-
anism (LWD) has been proposed in [2], which can compete
with some of the most sophisticated supervised methods.
The LWD method checks every sentence for subjectivity
words and a certain document is identified as a review when
at least k sentences contain a minimum of n subjectivity
words.

2.5 Annotation
There are three different methods available to annotate

reviews. One of these is Microformats [8]. Microformats is
a collection of formats that makes the extraction of semi-
structured information such as reviews possible. In the case
of reviews, the hReview microformat can be encountered on
various Web sites. Secondly, the W3C is working on extend-
ing the HTML language, as part of the HTML5 specifica-
tion, to allow native support for annotations as described by
the Microdata format. The third and final option is RDFa.
RDFa extends XHTML with a set of attributes that allow
the XHTML code to be enriched with metadata. Although
RDFa is aimed towards extending XHTML, its attributes
can also be used in HTML as most RDFa parsers will rec-
ognize these attributes.

Similar to ARROW, the OpenCalais Web Service [16] al-
lows for automatic annotation of textual content. In contrast
to the ARROW framework, OpenCalais employs Natural
Language Processing (NLP) techniques and machine learn-
ing to perform the analysis of the content. However, despite
the large set of supported entities in OpenCalais, reviews
are not included.

3. ARROW FRAMEWORK
Google Rich Snippets supports a limited vocabulary of

RDFa entities and their attributes. An excerpt of this vo-
cabulary is given in Fig. 3.

Our main focus is on recognizing and annotating the re-
view entities and their attributes in Web pages. The pro-
posed ARROW framework for automatically annotating re-
view pages by adding RDFa annotations to a Web page is
composed of three stages. Fig. 4 shows the main steps in
our framework.

Figure 3: Excerpt of the vocabulary supported by
Google Rich Snippets.



Figure 4: Stages of our recognition algorithm and
their intermediate products.

3.1 Hotspot Detection
After normalizing the data, we continue with identifying

the potential reviews or hotspots of the page. Usually, re-
views are characterized by blocks of text, which you find less
in some parts of the page, such as the page header, naviga-
tion, footer, etc. These parts are usually structured by large
amounts of HTML elements. If we want to identify reviews,
we thus want to find the elements that contain lots of tex-
tual content. Let us consider the example snippet of HTML
code depicted in Fig. 5.

<h1>
Intel Core i7-975 Extreme And i7-950
Processors Reviewed

</h1>

<div>
<p>

Page <span class="page-number">1</span> of
<span class="num-pages">15</span>

</p>
</div>

Figure 5: Two sample h1 and div HTML snippets.
The h1 element contains more textual content than
the div element.

The h1 element clearly contains more textual content than
the div element. In fact, the h1 element contains a string of
64 text characters (“\n Intel Core i7-975 Extreme And

i7-950\n Processors Reviewed\n”), whereas the div el-
ement only contains 34 text characters. This includes the
textual content of the span elements, and the spaces and
line breaks around the child nodes of the div element. The
entire h1 element contains 73 characters, whereas the div

element consists of 116 characters. Thus, 64
73
× 100% ≈ 88%

of the h1 element is pure text. The div element is made only
of 34

116
×100% ≈ 29% text. Using this ratio we can determine

how much of an element consists of text. More formally, this
text-to-content ratio, the TTCR, can be denoted as

TTCR =
Ltext

LDOM
, (1)

where the number of characters in text is denoted by Ltext

and the total number of characters within the DOM tree is

represented by LDOM . The elements with a high text-to-
content-ratio are labeled as hotspots.

The more textual content an element contains, the higher
the TTCR will be. However, when an element has textual
content, there are always at least two tags present in a string:
the start tag and end tag. Therefore the TTCR will never
equal 1, and thus TTCR < 1. Now that we can give each
element a TTCR, we will use a threshold to differentiate
between hotspot elements and non-hotspot elements.

3.2 Subjectivity Analysis
After identifying a hotspot, we need to find if indeed it

represents a review. A review can be defined as a subjective
view on a certain topic, as opposed to an objective view
which describes only facts about said topic. To show that
reviews are more subjective than non-reviews, a corpus of
100 review pages (containing 1 or more reviews) and 100
non-review pages has been collected from various Web sites.
The corpus covers a wide variety of subjects and consists of
text differing in size and writing styles. A distribution was
made for both sets according to the y percentage of sentences
containing x subjectivity words. It is clear from Fig. 6 that
reviews contain a significantly bigger percentage of sentences
with more subjective words in them as non-reviews.

In order to be able to inspect the hotspots, we use an
improved version of the LightWeight subjectivity Detection
mechanism (LWD) as proposed by [2]. Initial experiments
on a training set of 100 review pages and 100 pages with-
out reviews, from different sources and with different lengths
and layouts, show that this method generates a lot of false
positives. We improve on their method by taking the length
of the review into account. The original method only checks
whether a document has at least k sentences which contain
at least n subjectivity words. We propose to classify a doc-
ument as a review when at least m percent of all sentences
in the text contains a minimum of n subjectivity words.

3.3 Information Extraction
In order to be able to extract the attributes from reviews,

we employ several methods, depending on the characteristics
of the attributes.

3.3.1 Author
We use a Named Entity Recognizer (NER) to find persons

in the review. We inspect the first and last entity identified
by the NER system and retrieve the place of the entity in the
DOM tree. The higher in the tree hierarchy, the more likely

Figure 6: Distribution of sentences with subjectivity
words in our test corpus.



Table 1: Date notations and their associated regular expression patterns.
Notation Regular expression
dd/mm/yyyy & mm/dd/yyyy (\d{1,2})[-/.,\s](\d{1,2})[-/.,\s](\d{2,4})

yyyy-mm-dd (\d{2,4})[-/.,\s](\d{1,2})[-/.,\s](\d{1,2})

dd MM yyyy (\d{1,2})(th)?((\s)of)?\s(\w)\s(\d{2,4})

MM dd yyyy (\w)\s(\d{1,2})(th|,)?\s(\d{2,4})

it is that the entity is important and thus more likely to be
the reviewer. In the case of a tie the first entity is chosen
because with most reviews the reviewer is introduced at the
beginning of a review.

3.3.2 Date
Dates can be represented in many different formats. For

instance, one could write a date as “January 15th 2010” or
“15-01-2010”. Sometimes a date is not limited to just the
day of the month, the month, and the year, as is the case in
the two example dates mentioned earlier. Often the time is
added, which in some cases includes seconds or even millisec-
onds. Then there is also the difference between the 12-hour
clock and the 24-hour clock.

To successfully extract the date of a review, we have to
take many different notations into account. The date for-
mats are listed in Table 1, together with a regular expression
that can be matched against text to find dates. In these no-
tations, dd stands for the day of the month (1 through 31),
mm represents the month (1 through 12), MM is used for
the name of the month (January through December), and
yyyy denotes the year.

Sometimes, the days of the month are represented in their
ordinal form or extra punctuation is added. For exam-
ple, this is the case in ‘April 18th, 2010’. Also, instead
of the slash sign (U+002F) the comma (U+002C), dash
(U+002D), and full stop character (U+002E) can also be
used as the separator between the day and the month and
between the month and the year. To cope with all these
different formats, pattern matching is used to identify these
date and time formats in the reviews.

3.3.3 Product
The name of the product that is being reviewed can be

located on numerous locations on the Web page. Every Web
site maintains their own style. It is often hard to identify
the product in the review content. Other related products
are also frequently mentioned. In book or movie reviews, for
instance, the product is often compared to previous work of
the same author or director.

Through empirical observations we discovered that the
product name is often mentioned in the title and h1 el-
ements of the HTML code. The title element represents
the title of the Web page, whereas the h1 element represents
a heading of the highest hierarchical order on the Web page.
Thus, it makes sense to analyze these important elements to
find the product name on a review page.

Usually the title element contains more than just the
product name. It is common for the title element to also
contain the name of the Web site. This is where the h1 el-
ement can be of use. Each h1 element on the page can be
checked against the title element for any overlapping to-
kens. These overlapping tokens are likely to form the prod-
uct name, e.g., the title and h1 elements depicted in Fig. 7.

<title>
Red Door Cafe - Pacific Heights - San Francisco, CA

</title>
<h1>

Red Door Cafe
</h1>

Figure 7: An example title and h1 element.

In this example, the textual content of the h1 element
matches the first three words in the title element. What
also can be seen in the title element is the use of a dash
(U+002D) as a separator. Other popular separators are the
slash sign (U+002F) and vertical line (U+007C). These can
be used to split the textual content of the title element into
tokens. These tokens can be used as a fallback method when
comparing the h1 element with the title element results in
no match. The first token is then the most likely candidate
to represent the product name, as we have found through
empirical observations.

3.3.4 Rating
In more than 95% of our analyzed Web pages, we observe

that a review is concluded with a final grade or rating. The
rating r is often represented by a real number bounded by
the rating scale used on the Web site, i.e., rmin ≤ r ≤ rmax.
Popular scales are “1 till 5”, “1 till 10”, and “1 till 100”. In
90% of the cases, images are used for representing ratings.
Of these ratings, about 5% use letters (similar to the Amer-
ican grading system used in schools that goes from A to F)
and 15% use descriptors, e.g., “excellent”, “great”, “satisfac-
tory”, “bad”, “rubbish”. However, because most Web sites
use an (alternative) number to assign the rating, we have
focused on numerical ratings.

Just as is the case with identifying the date of a review,
pattern extraction is used to recognize and extract the rat-
ing of a review. Table 2 lists the different rating notations
ARROW recognizes, together with their respective regular
expression patterns.

A popular format to assign the rating is by the use of star
images. Such is the case on Google for instance, as depicted
in Fig. 1. An advantage of such a format is that it is easy
for the user to identify the range of the rating. In Fig. 1,

Table 2: Rating notations and their associated reg-
ular expression patterns.

Notation Regular expression
4 out of 5 ([0-9.,]+)\s(out ?)of\s([0-9.,]+)

4/5 ([0-9.,]+)\s?/\s?([0-9.,]+)

4 stars ([0-9.,]+) stars



Figure 8: A screenshot of our Web application.

four out of the five stars are colored yellow, thus assigning a
rating of four out of five to the product. These star images
are coded in the Web page’s HTML code using one or more
img elements. These img elements sometimes have an alt

attribute specified which is the textual fallback content in
case the element can not be displayed. This alt element can
thus be checked for patterns described earlier, as images are
hard to be comprehended by machines.

3.4 Page Annotation
When the review and its attributes are identified, the

framework annotates pages using Google’s RDFa vocabu-
lary designed by Google for its Rich Snippets. Annotating
involves putting tags around the identified key elements of
the review.

4. ARROW IMPLEMENTATION
We have implemented the ARROW framework as a Web

application, available at http://www.arrow-project.com/.
The Web offers a great platform that allows the application
to be used on any kind of operating system on a computer
anywhere in the world. For implementing the framework,
we have used the Java programming language. Together
with the Apache Tomcat server, the Java programming lan-
guage offers excellent methods to develop a Web application
according to the framework described in Sect. 3, as it is
supported by a wide variety of available libraries. Figure 8
shows a screenshot of our Web application.

Figure 8 shows the two sections of the user interface: (1)
the input fields, and (2) the output canvas. A URL can be
entered in the input form. The application will then render
the Web page in its annotated form or display its hotspots,
depending on the output type that has been specified in
the input form. Of course, this is just one of the many
possibilities to implement the ARROW framework.

The preliminary step of our system is data transformation.
In this step the specified URL is retrieved and transformed
into a DOM tree. Transforming the HTML or XHTML code
into a DOM tree eases the manipulation of the Web page’s
content compared to having the content as a string of char-
acters. It makes accessing specific tokens easy and because
of the popularity of this standardized data structure, a large
number of APIs to access it are readily available. In order
to transform the HTML or XHTML code of the Web page
into a DOM tree we employ W3C’s jTidy [15] library. This

package offers a very simple, yet effective, API to transform
the string of tokens into a DOM tree.

4.1 Hotspot Detection
To calculate the TTCR we traverse the DOM tree. Dur-

ing this process we calculate the Ltext and LDOM values for
each element we encounter. These are then used to calculate
the element’s TTCR as described in Eq. 1. Whenever the
TTCR ≥ 0.85, the element is marked as a hotspot. The
cut-off value of 0.85 has been empirically found through ex-
perimenting with values between 0 and 1 with a step size of
0.01 on a training set containing 100 pages with 1 or more
reviews, targeting high recall in order not to miss reviews
(even if the precision is relatively low), and proved to provide
the best results.

A summary of the test results is presented in Table 3.
In these experiments, as well as in our other experiments
discussed in this paper, we observe the accuracy ACC, pre-
cision PRC, recall REC, specificity SPC, and F1-score F1.

4.2 Subjectivity Analysis
In our implementation of the ARROW framework, we use

an improved version of the LWD system and instead of us-
ing only positive and negative opinion words, we include
ambiguous subjectivity words as well. The reason is that
some of these words can be used as both positive and neg-
ative, like “limitless” or “major”, or they amplify the mean-
ing of the surrounding subjectivity words, for example the
words “absolutely” and “immensely”. These words are as-
signed “neutral” subjectivity in the lexicon. However, we
prefer to call them ambiguous to prevent confusion with the
term “neutral” which denotes lack of subjectivity.

Table 3: Test results of hotspot identification.
TTCR ACC PRC REC SPC F1
0.25 0.97 0.00 0.00 1.00 0.00
0.50 0.98 0.66 0.66 0.99 0.66
0.75 0.99 0.71 0.78 0.99 0.75
0.80 0.99 0.90 0.80 1.00 0.85
0.85 0.99 0.87 0.87 1.00 0.87
0.90 0.99 0.88 0.49 1.00 0.63
0.95 0.98 0.95 0.35 1.00 0.52
1.00 0.97 0.00 0.00 1.00 0.00



For our improved LWD algorithm, the optimal values of
percentage of subjective sentences m and minimum number
of subjectivity words per sentence n (i.e., 5.3% and 5, re-
spectively) have been determined empirically, targeting for
the highest F1-score. In our experiments on a training set
containing 100 pages with 1 or more reviews and 100 pages
without reviews, values of m ranged between 0% and 100%
with a 0.1% increment, and values of n ranged between 2
and 9 with an increment of 1. A summary of the test re-
sults is presented in Table 4, showing that including the
ambiguous subjectivity words improves both the accuracy
and F1-score. In the table the methods denoted with “+”
included “neutral” subjective words.

4.3 Information Extraction
For each of the reviews discovered during the subjectivity

analysis we identify the attributes of the reviews. These at-
tributes will then be properly annotated using the RDFa
vocabulary for Google Rich Snippets. Even though two
high performance NER systems, i.e., the Illinois NER sys-
tem and the Stanford NER system, obtain high F1-scores
on the CoNLL-2003 NER shared tasks (0.9080 and 0.8686,
respectively), their scores on the Web tasks are much lower
(0.7489 and 0.7250, respectively) [14]. The downside of the
Illinois system is however that it uses extensive gazetteers,
whereas the Stanford NER system uses conditional random
field models, making the whole process significantly slower
than the Stanford system. As we implement our framework
as a Web application, speed is more important than accuracy
(the user will never employ a slow system) and therefore we
employ the Stanford NER system.

5. ARROW EVALUATION
This section evaluates the ARROW framework in more

detail. Using the optimal cut-off values for text-to-content
ratio, minimum percentage of subjective sentences, and min-
imum number of subjectivity words per sentence determined
in Sect. 4, we evaluate the framework on review identifica-
tion and attribute identification, based on a test set that is
different from the training set used for determining optimal
parameter values. On average the review annotation process
took less than 1 second for each Web page. Figure 1 shows
an application using a Web page that was annotated using
ARROW. In this example application Google has used the
annotated reviews to enhance its search results.

5.1 Review Identification
To assess the review recognition performance, we test the

tool on a selection of 100 English review Web pages and
100 non-review Web pages. We annotate the reviews on the

Table 4: Test results of review/non-review classifi-
cation.

Method ACC PRC REC SPC F1
LWD(1%, 4)+ 0.53 0.51 0.97 0.08 0.67
LWD(64.3%, 2)+ 0.67 0.73 0.53 0.80 0.61
LWD(5.3%, 5)+ 0.66 0.61 0.91 0.41 0.73
LWD(1%, 4) 0.55 0.53 0.90 0.20 0.61
LWD(50.1%, 2) 0.67 0.75 0.50 0.83 0.60
LWD(25.9%, 2) 0.60 0.56 0.95 0.25 0.70

Table 5: Test results for review identification.
Web site ACC PRC REC SPC F1
tripadvisor.com 0.60 0.93 0.53 0.85 0.68
epinions.com 0.44 0.98 0.37 0.95 0.53
imdb.com 1.00 1.00 1.00 1.00 1.00
yelp.com 0.54 1.00 0.53 1.00 0.69
cnn.com* 0.74 0.00 0.00 0.74 0.00

Web page manually, then present the URL to the ARROW
application. We then compare the manually annotated doc-
ument with the framework output, and analyze them on true
and false positives and negatives, accuracy, precision, recall,
specificity, and F1-score. The results are shown in Table 5,
with non-review Web sites marked with an asterisk (*).

These results underline that we obtain good results on
precision and specificity, yet varying results on accuracy and
recall. The results also show us that the framework works
better on some Web sites than on others, caused by type
of content, specific Web site structures, etc. For example,
the high performance of imdb.com can be explained by the
structure of the Web site, as these reviews have not too many
HTML tags and are very verbose. Furthermore, cnn.com is
a Web site which does not contain reviews, explaining why
reviews were not found by our framework.

5.2 Attribute Identification
We perform a similar experiment in order to assess the

performance of review attribute identification. For all true
positives, i.e., reviews that are correctly identified by our
framework as being reviews, we check for correct recognition
of review attributes. As attribute recognition is performed
on plain text (the content of the review) we aggregate our
results for the different Web sites, as shown in Table 6.

Based on these results, we can conclude that our frame-
work does a good job on finding the item reviewed, date,
and rating, but performs poorly on detecting the authors.
This can be explained by the ambiguity of the names used
on the Internet, as many people use nicknames on the In-
ternet rather than their real (full) names. This makes the
automatic identification of people quite hard as the Stan-
ford NER system has been trained to recognize real names.
This also explains the high number of false positives, be-
cause when the actual reviewer is missed, it often returns a
wrong entity as being the reviewer.

6. CONCLUSIONS
Google Rich Snippets is one of the possible improvements

that semantic annotations can add to the Web. Google Rich
Snippets allows for a more appealing presentation by empha-
sizing some specific concept properties. Unfortunately, there
are not yet many Web sites that support this vocabulary. In

Table 6: Test results for attribute recognition.
Attribute ACC PRC REC SPC F1
reviewer 0.02 0.07 0.03 0.00 0.04
item reviewed 1.00 1.00 1.00 1.00 1.00
date 0.85 0.98 0.86 0.00 0.92
rating 0.49 0.71 0.62 0.00 0.66



order to allow existing Web sites to make use of Google Rich
Snippets, we have proposed the ARROW framework in this
paper, which aims to automatically identify and annotate
reviews on Web pages using the Google’s vocabulary.

The framework consists of four steps: hotspot identifica-
tion, subjectivity analysis, information extraction, and page
annotation. We have focused on a subset of Google Rich
Snippets, which considers reviews. We have presented an
implementation of the framework, which is a Web interface,
but it can also be used as a plugin for other Web appli-
cations aiming to make use of the provided annotations.
Next to the visual annotation, the Web interface provides for
the RDFa annotation. Even though the framework makes
use of Google Rich Snippets, our approach should be easy
to use also for other vocabularies due to the genericity of
our components: tag-to-text-ratio, named-entity-recognizer,
sentiment-analysis, etc. Subsequently, the innovation of this
paper lies in combining techniques from pattern extraction,
sentiment analysis, named entity recognition for annotating
Web pages using the Google Rich Snippets vocabulary.

Our review identification results underline that we obtain
good results on precision and specificity, yet varying results
on accuracy and recall. The results also show us that the
framework works better on some Web sites than on others,
caused by type of content, specific Web site structures, etc.
Furthermore, our framework does a good job on finding at-
tributes, like item reviewed, date, and rating, but performs
poorly on detecting the authors, which can be explained by
the ambiguity of author names used on the Internet.

As future work, we suggest to extend our framework to
cover other elements from the Google Rich Snippets vocab-
ulary, e.g., recipes, videos, and organizations. The only con-
straints it poses to Web pages are the existence of large por-
tions of text intermixed with tags. Of course the parameters
have to be adapted accordingly and some components need
to be changed (e.g., different tag patterns for recipes and
video recognition), replaced (e.g., no sentiment analysis is
required to recipes for example), or introduced (e.g., action
lists recognition for recipes). In addition, we would like to
improve on our framework by being able to extract ratings
from images when no caption is given. Also, one could take
into consideration that many reviews lack an explicit rating,
e.g., a grade or a number of stars. As Google Rich Snippets
accepts a rating based on a scale of 1 to 5, it would be use-
ful to investigate ways of calculating ratings based on review
texts using, for example, sentiment analysis methods.
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