
A Genetic Programming Approach for
Learning Semantic Information Extraction

Rules from News

Wouter IJntema, Frederik Hogenboom, Flavius Frasincar, and Damir Vandic

Erasmus University Rotterdam
PO Box 1738, NL-3000 DR
Rotterdam, the Netherlands

wouterijntema@gmail.com, {fhogenboom, frasincar, vandic}@ese.eur.nl

Abstract. Due to the increasing amount of data provided by news
sources and the user specific information needs, recently, many news per-
sonalization systems have been proposed. Often, these systems process
news data automatically into information, while relying on underlying
knowledge bases, containing concepts and their relations for specific do-
mains. For this, information extraction rules are frequently used, yet
they are usually manually constructed. As it is difficult to efficiently
maintain a balance between precision and recall, while using a manual
approach, we present a genetic programming-based approach for auto-
matically learning semantic information extraction rules from (financial)
news that extract events. Our evaluation results show that compared to
information extraction rules constructed by expert users, our rules yield
a 27% higher F1-measure after the same amount of rules construction
time.

1 Introduction

The immense growth of the World Wide Web in the past decades resulted in
enormous amounts of data that are readily available to the average user. Many
researchers have hence developed ways to convert these vast amounts of data
into valuable information. The Semantic Web aims to organize the currently
unstructured Web. While to a human reader, the meaning of text is easily inter-
pretable, machines interpret an average document currently found on the Web
as a random collection of characters, without properly associating meaning to
it. The Semantic Web is organized by using numerous languages and technolo-
gies to convey meaning. A structural means for representing Web information is
provided by ontologies.

An ontology is formally defined as a specification of a conceptualization and
can be used to store domain-specific knowledge in the form of concepts with vari-
ous relations between them. Utilizing ontologies within Web information systems
allows one to perform searches based on these concepts and relations. Often,

ontologies are used as a knowledge base to support the information-intensive
operations. An example of a finance-oriented Web information system is the
Hermes framework [10]. Its ontology consists of lexicalized concepts that exist
in the financial domain and is used for the classification of Web news items, as
well as querying.

A major problem in such news processing frameworks is that in order to
turn news item data into information, a knowledge engineer has to keep up with
the incoming data and process it in order to determine the value of the data.
The ontology needs to be kept up-to-date in an efficient and timely manner. For
this, user-defined patterns can be used that extract information that is needed
for ontology updating. Usually, lexico-syntactic patterns are employed [11], yet
the problem with these type of patterns is that they are based on syntactical
elements, such as Part-of-Speech (POS) tags, and thus do not make use of the
available domain semantics. Their application is hence often limited to hypernym
(generalization), hyponym (specialization), meronym (part of), and holonym
(the whole) relations.

In order to overcome the aforementioned problems with common information
extraction patterns, in earlier work, we have proposed the lexico-semantic Her-
mes Information Extraction Language (HIEL) [12], which makes use of lexical
and syntactical elements as well as semantic elements. While the use of infor-
mation extraction rules allows for semi-automatic information extraction, the
construction of the patterns remains a non-trivial, tedious, and time-consuming
process, because a trade-off needs to be made between the rules’ precision and re-
call. Therefore, in this paper, we propose a method that assists the construction
of information extraction rules. Additionally, the method is implemented and
evaluated on a data set containing news, while employing the learned rules for
fact extraction (relations between concepts) within the financial domain. In this
research, we consider facts to represent (financial) events like acquisitions, profit
announcements, CEO changes, etc., which are captured by triples consisting of
a subject, a predicate, and an object.

The remainder of this paper is organized as follows. First, we discuss related
work in Sect. 2. Next, we introduce our information extraction pattern language
and our rule learning framework in Sects. 3 and 4, respectively. Subsequently, our
implementation is discussed in Sect. 5 and Sect. 6 presents the performance eval-
uation of our algorithm. Last, we draw conclusions and discuss some directions
for future work in Sect. 7.

2 Related Work

In the mature field of pattern learning, there is a lot of work previously done.
Hence, we discuss only work that is closely related to ours, i.e., learning patterns
for information extraction. This section elaborates on a small, yet representative,
part of the current body of knowledge, ranging from work as old as 1992 to more
recent work from 2010.

In the early 1990’s, Hearst [11] showed that simple lexico-syntactic patterns
can be used to extract hyponyms from text. While the patterns of Hearst gen-
erated high precision, they did not perform well recall-wise, hence, driving the
development of new pattern languages that were (loosely) based on the patterns
of Hearst. For example, in 2002, the authors of [7] proposed JAPE rules for
information extraction which are nowadays widely employed, e.g., in the work
of Maynard et al. [14]. Other applications that use patterns for general purpose
information extraction are presented in for example [2], while [8] uses patterns
specifically for news processing, analogous to Hermes, our news processing frame-
work [10]. Even though some of the aforementioned pattern languages incorpo-
rate some semantics, they could easily result in verbose rules and they could
become rather complex [12]. Hence, we defined our own information extraction
language which we incorporate in the Hermes news processing framework, i.e.,
the Hermes Information Extraction Language (HIEL) [12].

Since the composition of information extraction rules is a tedious process
which requires a domain expert to invest a lot of time, a vast amount of effort
has been put into automation of this process. We distinguish between super-
vised and unsupervised learning, where in the former method a model is learned
from data of which the correct outcomes (classifications) are known, while the
latter method does not rely on any prior knowledge. Due to the fact that on
free text supervised methods generally perform better compared to unsuper-
vised methods [6], we aim to employ a supervised learning technique. A problem
many supervised approaches have to deal with, is the sparse amount of training
examples, for which bootstrapping has proven to be an effective solution [4].

In [16] hypernym relations are learned from text using a supervised learning
technique. The authors collect noun pairs from a corpus in order to identify
new hypernym pairs, and for each of these pairs sentences are gathered in which
both nouns occur. New hypernym classifiers are trained based on patterns ex-
tracted from the gathered sentences, using classifiers like Näıve Bayes, genetic
algorithms, and logistic regression. When such methods are applied in rule learn-
ing processes, rules are generated randomly during initialization and are altered
in such a way that the built rules perform better in terms of a predefined metric,
which is often a combination of precision and recall. With respect to rule gen-
eralization and specialization, the authors of [16] distinguish between top-down
and bottom-up approaches. The first type starts with a general rule and then
aims to specialize it, while the latter starts with a specialized rule which is then
generalized. Our approach goes beyond the one from [16] by allowing domain
concepts and relationships to be extracted from text.

WHISK [17] employs a supervised top-down rule learning method. The rules
learned in this system are based on regular expressions, which is similar to our
approach. In addition to simple literals, syntactic and semantic tags are used to
generalize the rules. In the learning process, these tags are determined by means
of heuristics. While classes are allowed, no is-a hierarchy or other relationships
are employed, while at the heart of our system is a domain ontology with both
concepts and relations, which is used to create generic lexico-semantic patterns.

KNOWITALL [9] uses an unsupervised bottom-up approach in order to ex-
tract named-entities from the Web. The system employs patterns that incor-
porate POS tags to extract new information. Pattern learning is based on Web
searches, where for each occurrence of an instance, a prefix of a specific amount of
words and a suffix of a number of words is added to the pattern. The learned pat-
terns consist only of an entity surrounded by words, unlike our approach, which
employs a larger amount of linguistic information like orthographical categories
and ontology elements, and not only POS tags. Furthermore, the expressiveness
of the learned patterns appears to be limited, since repetition and logical opera-
tors are not allowed. KNOWITALL focuses on learning named entity extraction
patterns rather than on the extraction of new relationships between entities,
which is something we pursue.

While many of the above methods have proven to be effective when using
lexico-syntactic rules, Genetic Algorithms (GA) are suitable for rule learning as
well, since the input is often a bit string. One can encode a pattern such that
every bit represents a token or its corresponding features. By employing different
genetic operators, such as inheritance, selection, mutation, and cross-over, the
optimal information extraction rule can be determined. A similar method is
applied in [5] for learning lexico-syntactic patterns, that only incorporate POS
tags, in order to extract entities, which is different from our approach, since we
aim to generate lexico-semantic patterns to extract concepts, relationships, and
events (complex concepts) from text.

A branch of Genetic Algorithms is Genetic Programming (GP), where gen-
erally each problem is represented as a tree instead of a bit string. This makes it
easier to encode the problem. Each node either represents a sequence, a logical
operator – e.g., conjunction, disjunction, and negation – or a repetition opera-
tor. Similarly, terminal tree nodes are suitable to represent a literal, syntactic
category, orthographical category, or a concept. Genetic algorithms often con-
verge fast to a good solution when compared to other meta-heuristics, such as
simulated annealing [18]. By performing the default genetic operators, trees can
evolve until the desired performance is achieved. In a similar manner [3] employs
trees to represent rules, containing POS tags, that are used in genetic program-
ming to discriminate between definitions and non-definitions in text. Because
of the identified advantages of Genetic Programming approaches over other ap-
proaches, in our research, we use a Genetic Programming approach to pattern
learning.

3 HIEL: the Hermes Information Extraction Language

The Hermes Information Extraction Language (HIEL) has been extensively de-
scribed and evaluated in earlier work [12]. This section provides an overview of
the basic constructs of HIEL, which are captured by Fig. 1. The latter figure
shows an example rule that links CEOs to their companies. Lexical and syntactic
elements are indicated by white labels, whereas semantic elements (which make
use of a domain ontology) are indicated by shaded labels.

($sub, kb:hasCEO, $obj) :- $sub:=[kb:Company] % kb:CEO “,”

 $obj:=((NNP | upperInitial)+)

label class instancewildcard

orth. cat.syn. cat. repetitionlogical

relation

literal

Fig. 1. Example HIEL rule

In HIEL, a rule typically consists of a left-hand side (LHS) and a right-hand
side (RHS). Once the pattern on the RHS has been matched, it is used in the
LHS, consisting of three components, i.e., a subject, predicate, and an object,
where the predicate describes the relation between the subject and the object (in
this case kb:hasCEO). The RHS supports sequences of many different features,
as explained below.

First, labels (preceded by $) on the RHS associate sequences using assignment
(:=) to the correct entities specified on the LHS. Second, syntactic categories
(e.g., nouns, verbs, etc.) and orthographical categories (i.e., token capitalization)
can be employed. Next, HIEL supports the basic logical operators and (&), or (|),
and not (!), and additionally allows for repetition (regular expression operators,
i.e., *, +, ?, and {. . .}). Moreover, wildcards are also supported, allowing for ≥ 0
tokens (%) or exactly 1 token () to be skipped.

Of paramount importance is the support for semantic elements through the
use of ontological classes, which are defined as groups of individuals that share
the same properties, i.e., the instances of a class. A concept (class or instance) or
relationship may consist of several lexical representations that are stored using
the synonym property in the (lexicalized) domain ontology. The hierarchical
structure of the ontology allows the user to make rules either more specific or
generic, depending on the needs at hand.

4 Rule Learning

In order to assist domain experts with rule creation, we propose to employ
a genetic programming approach to rule learning. Our information extraction
language, HIEL, which can intuitively be implemented using tree structures, fits
the required tree structure of the genetic programming operators. Additionally,
a genetic programming approach offers transparency in the sense that it gives
the user insight into how information extraction rules are learned. Also, a genetic
approach – as opposed to other meta-heuristics such as simulated annealing –
often converges to a good solution in a relatively small amount of time [18].

4.1 Rule Learning Process

Figure 2 depicts the basic steps of our genetic programming approach to rule
learning. First rules are initialized, followed by the evaluation of the fitness
of each of these rules. Rule evolution is done by applying a genetic operator

evaluate

1

3 42

765 8

noyes mutation

cross-over

elitism

evaluate

terminate?

1
1

1 1

1

no

new rule

population

rule group

new rule

population

yes

terminate?

startend

Fig. 2. Rule learning process

on the rules, such as elitism, cross-over, and mutation. Based on a selection
procedure which takes into account the fitness of individuals we determine the
rules on which these operators are applied. This process continues until one of the
termination criteria (see Subsect. 4.7) is fulfilled, after which the rule with the
highest fitness is collected in a rule group. The latter is a group of rules, in which
each rule aims to extract the same type of information, albeit covering different
situations. Since a single rule is not likely to achieve a high recall, because of the
many different sentence structures, a collection of rules could achieve this goal.
After the best rule, i.e., the rule with the highest fitness, has been selected and
the rule group does not yet meet its termination requirements, a new population
is initialized and another iteration is performed.

4.2 Representation

While in genetic algorithms, individuals are generally encoded in the form of
an array of bits, in genetic programming individuals are specified as trees. In
our representation, a tree consists of functions and terminals. Functions have
functions and terminals as children, whereas terminals cannot have child nodes.
We differentiate between five functions, i.e., a sequence, a conjunction operator, a
disjunction operator, a negation operator, and a repetition. Also, we distinguish
four terminals, i.e., a syntactic category, an orthographic category, a concept,
and a wildcard.

Each information extraction rule can be represented by a tree. As HIEL
requires labels to be placed on separate elements on the first level of the tree
and each label should be bound to different tokens in the text, the root of each
tree is a sequence, which can have one or more function or terminal child nodes.

4.3 Initialization

The first phase in the genetic programming process is the initialization of the
rules. During the initialization, a population of N individuals is created. For
initialization, each node needs to be created such that it is syntactically correct.
In addition, a maximum number of nodes per tree and a maximum tree depth
helps constraining the rule size and complexity.

Generally, in genetic programming, information extraction rules are gener-
ated randomly at initialization phase. A commonly used method is ramped-half-
and-half, which is proven to produce a wide variety of trees of various sizes and
shapes. The ramped-half-and-half initialization procedure consists of two meth-
ods, i.e., full and grow. The full method generates trees for which the leaves (ter-
minal nodes) are all at the same level (i.e., maxdepth), while the grow method
generates more variously shaped trees. Because neither of the methods provide
a wide variety of individuals, half of the population is constructed using the full
method and half of the population is constructed using the grow method.

4.4 Fitness Evaluation

Each individual in the population is evaluated for each generation in order to
determine its fitness. We compare the extracted information with manually an-
notated information by evaluating the F1-measure and the number of nodes
within a tree. The F1-measure is defined as the harmonic mean of precision (the
correctly found items) and recall (the correctly found items with respect to the
should-be-found items). We calculate the number of nodes within a tree in order
to control the amount of bloat (i.e., uncontrolled growth of information extrac-
tion rules during the evolutionary process) in the population. Both measures
are combined into one fitness measure that determines how well an individual
performs compared to others, where F1-scores of longer rules are penalized more
than those of rules showing less bloat.

A common problem in genetic programming is tree size explosion. Often, rules
are learned that have the same fitness, but that are slightly different. In order
to overcome the problem of learning rules consisting of unnecessary nodes, we
introduce some parsimony pressure by including a small penalty in the overall
fitness measure for the total number of nodes of the rule. Let α denote the
amount of bloat (optimized later on) and R represent a rule, then the fitness of
a rule (when taking into account both F1 and rule length l) is determined as:

Fitness(R) =

{
0 if F1(R) = 0
F1(R)− α · l(R) if F1(R) > 0 .

(1)

4.5 Selection

For each genetic operator one or more individuals from the population need to
be selected. According to the Darwinian principles, the strongest individuals sur-
vive, therefore it is better to select individuals based on their fitness. A common

selection method is tournament selection. One of the advantages of this method
is that the selection pressure, which determines the degree to which it favors fit
individuals over less fit individuals, remains constant. In tournament selection,
ts (tournament size) individuals are selected randomly from the population, and
the individual with the highest fitness is selected. By adjusting the tournament
size, the selection pressure can be adapted.

4.6 Genetic Operations

After the rules have been initialized, the actual process of evolving can be ini-
tiated. During the evolution, several genetic operators are applied, i.e., elitist
selection, cross-over, and mutation.

Elitist Selection. The first operation, elitist selection, resembles the survival
of the fittest principle from Darwin. After the fitness of each individual in the
population has been determined, the best r performing individuals are selected
and copied to the next generation. The user may alter the portion of the popula-
tion that is allocated for selection. Generally r is set to a value between 5% and
10%, in order for the algorithm to keep just a small set of the best performing
individuals.

An advantage of applying the selection operator is that it helps the process
to remember the best performing individuals until a better one is found. If
the operator is omitted, these well performing rules might disappear from the
population due to the cross-over and mutation operators.

Cross-over. During the cross-over operation two parents are selected from the
population to produce either one or two offsprings. The former method randomly
selects a cross-over point in both parents and interchanges the selected nodes,
producing two children. The latter also randomly selects a cross-over point in
both parents, but generates one child by combining the selected parts from both
parents. Each parent is chosen based on its fitness using tournament selection
and could be selected more than once in each generation, making it possible to
use the same individual for multiple cross-over operations.

The selection of the cross-over points is generally not done with uniform
probability, since the majority of the nodes will be terminal nodes. In order to
overcome this problem, we select 90% of the time a function and 10% of the time
a terminal node. While individuals are selected based on their fitness, the nodes
interchanged during cross-over are selected in a random manner. This can result
in offspring that do(es) not necessarily perform well, while the originating trees
can have a relatively good performance. This is the case if a node (including its
child nodes), also called a subpattern, is almost never discovered in the text.

Mutation. The mutation operator aims to introduce more variety into the pop-
ulation. Several approaches are identified in mutation for genetic programming.
The first is subtree mutation, also known as headless chicken cross-over, where a

random point in the tree is replaced by a randomly generated subtree. A second
approach is point mutation, where only the randomly selected point is replaced
by a function or terminal. If no replacement is possible (i.e., if the randomly
generated node is not allowed within the selected parent node), the mutation is
not performed. We implement the headless chicken cross-over method, because
of its reported good performance with respect to the other approaches [1, 13].

4.7 Termination Criteria

A genetic programming run terminates when one of the termination criteria is
satisfied. In our system we have implemented two termination criteria, one for
a run and one for a rule group. Each run generates a certain maximum number
of generations, which can be specified by the user. Because of the wide variety
in sentence structures it is not plausible that one rule would be able to achieve
high recall and precision values, yet a group of rules might be able to achieve
this goal for a particular event. Once a termination criterion has been fulfilled,
the rule with the highest fitness is saved to the assembled rule group. This group
is a set of rules that intend to extract the same information (i.e., triple type).
For example, it is likely that one needs several rules to extract all instances of
the CEO relationship that has been mentioned in examples earlier. If the triple
to extract is defined by Company hasCEO Person, at least two rules are needed
to extract both the instance in “Apple’s chief executive, Steven P. Jobs” and
“Steve Ballmer, Microsoft’s chief executive” as the order of the company and
the CEO is different in these two cases.

Once a rule is learned and added to the rule group, the information extracted
by this rule is excluded while learning additional rules. If a rule does match a
previous annotation, it is not taken into account for its fitness, and hence each
rule will extract different information. After the termination criterion for the
current population fires, the rule with the highest fitness is only collected in the
rule group if it causes the rule group to achieve a higher overall fitness value.
In case it lowers the fitness of the entire group, it is omitted. The entire rule
learning process, i.e., assembling the rule group, terminates when T iterations
of updates have passed in a sequence, which did not manage to produce rules
that increased the fitness of the rule group, meaning the algorithm is stuck in a
(local, possibly sub-optimal) solution.

5 Implementation

We implemented our information extraction language and rule learning approach
in the Hermes framework [10], which can be found at http://people.few.

eur.nl/fhogenboom/hermes.html. At the core of the Hermes framework lies a
lexicalized financial domain ontology which specifies domain concepts and their
relationships. The implementation, the Hermes News Portal (HNP), provides
components for the import and classification of the news articles extracted from
various RSS news feeds. During this process the classifier adds annotations, such

as syntactical categories, orthographical categories, and concepts, to the text
which can subsequently be used for creating and matching information extraction
rules. The details of this process can be found in our previous work [10].

In our rule learning environment, the user is able to keep track of the current
generation, the learned rules, and their fitness. Several controls are put in place
for managing the rule learning process. Additionally, current generations and
learned rules are displayed. Last, the user is able to fine-tune the algorithm
parameters.

6 Evaluation

To evaluate the performance of our information extraction language and the
genetic programming approach to automatic rule learning, we have selected 500
news articles from the Web with an average length of 700 words from the financial
and technology domain originating from various sources, including New York
Times, Reuters, Washington Post, and Businessweek. Each news item has been
processed using Hermes, with at the back-end a knowledge base containing over
1,200 concepts, including companies, persons, products, financial terms, etc. The
learned rules are employed for fact extraction (relations between concepts, i.e.,
triples that denote an event) within the financial domain.

Three domain experts have annotated the documents, while distinguishing
between ten different financial relations, such as profits, products, CEOs, and
competitors of companies. In order to decrease the amount of subjectivity we
have used a democratic voting principle for the selection of annotations, meaning
two out of three annotators should have proposed the annotation to consider
it valid. As displayed in Table 1, this resulted in an average Inter-Annotator
Agreement (IAA) of 71% for 1,153 unique annotations among all the relations.
The table shows that there is a clear difference between the different relations.
For instance, the Competitor relation is often subjective and therefore hard to
determine whether a clear competitor relationship is stated in the text. The same
can be argued for the Partner relation, which indicates a partnership between
two companies. This is in contrast to, for instance, the CEO relation, which is
often indicated by words like “CEO”, “chief”, or “chief executive”.

Furthermore the table shows the number of annotations per relation found
by the annotators in the set of 500 news items. While the knowledge experts
have selected subjects and objects that appeared in separate sentences, which is
shown in the second column of Table 1, we have made a selection of annotations
for which the subject and object appeared in the same sentence, displayed in
the third column. The reason for doing this, is that restricting it to finding
relations in a single sentence speeds up the algorithm significantly, while losing
only a small portion of the annotations. In future work we intend to experiment
with matching a rule onto several sentences, instead of just one. This may also
increase the recall, because it often occurs that the subject and the object lie
within a certain range from each other, while such an approach still takes less
computation time compared to matching the full news item.

Table 1. Inter-Annotator Agreement (IAA) for each of the 10 considered relationships

Relation Articles Sentences IAA

Competitor 157 126 0.62
Loss 56 31 0.67
Partner 61 59 0.63
Subsidiary 115 97 0.63
CEO 161 135 0.83
President 64 58 0.68
Product 344 300 0.73
Profit 68 46 0.72
Sales 45 20 0.78
ShareValue 82 77 0.78

Total 1153 949 0.71

Using a hill-climbing procedure, we optimized our algorithm parameters.
When learning rules using the genetic programming algorithm with ramped-half-
and-half initialization, tournament selection (with a tournament size of 0.25),
and a population size of 100, a tree depth of 3 and a maximum amount of chil-
dren of 7 yielded the best results. Here, the mutation rate and elitism rate are
0.3 and 0.05, respectively, whereas the bloat parameter α equals 0.001, making
it only effective for situations where F1-measures are approximately the same.
The group size equals 10, and in our optimal configuration, we only allow for
T = 50 generations with the same fitness values. Also, during rule learning, we
put an emphasis on precision scores with β = 0.3 for Fβ , i.e., an increase in
precision is considered to be more important than an increase in recall.

The results of the evaluation are presented in Table 2, which underlines
that, when compared to a full manual approach to rule creation, the use of
genetic programming for rule learning can be useful for the considered relations
within our evaluated financial domain. The learned rules are used for extracting
relations between subjects and objects (facts), i.e., both subject and object have
to be correctly identified, as well as the other components used in the rules.
Small errors in classification of individual tokens (words) easily disrupt relation
detection. Correct classification of relations thus is less trivial than regular named
entity recognition, leading to lower results than one would initially expect [10].

For automatic rule learning, the CEO relation performs best with a preci-
sion, recall, and F1-measure of 90%. In a similar manner rules are learned for the
President and Product relations. For the latter relation we obtain a rule group
with a precision and recall of 79%, yielding a 79% F1-measure. For the Presi-
dent relation, we measure a precision and recall of 82% and 79%, respectively,
resulting in a slightly higher F1-measure of 80%. The President relation hence
performs slightly worse than the CEO relation, even though the structure of text
is somewhat similar. This may be caused by the lower number of annotations
for the President relation. In addition, we have shown in Table 1 that the IAA
for this relation is slightly lower compared to the CEO relation.

Table 2. Precision, recall, and F1 scores for all 10 financial relations (rule groups) after
5 hours of automatic rule learning (left) and manual creation (right)

Automatic Learning Manual Creation
Relation Precision Recall F1-measure Precision Recall F1-measure ∆%

Competitor 0.667 0.508 0.577 0.875 0.280 0.424 36.0%
Loss 0.905 0.613 0.731 0.818 0.333 0.474 54.3%
Partner 0.808 0.356 0.494 0.450 0.391 0.419 18.0%
Subsidiary 0.698 0.309 0.429 0.611 0.239 0.344 24.8%
CEO 0.904 0.904 0.904 0.824 0.700 0.757 19.5%
President 0.821 0.793 0.807 0.833 0.455 0.588 37.2%
Product 0.788 0.793 0.791 0.862 0.596 0.704 12.3%
Profit 0.960 0.522 0.676 1.000 0.273 0.429 57.7%
Sales 0.900 0.450 0.600 0.455 0.455 0.455 32.0%
ShareValue 0.939 0.805 0.867 0.530 0.778 0.631 37.5%

Total 0.839 0.605 0.703 0.726 0.450 0.555 26.6%

For the Competitor, Subsidiary, and Partner relations, the precision, recall,
and F1-measure are lower in comparison with the aforementioned relations, ap-
proximately ranging between 40% and 60%. This could be caused by the fact
that both the subject and the object of these relations are expected to be of
type Company, while for other types of relation – e.g., Product and CEO – the
subject and object are of different types, increasing the importance of finding
contextual concepts that specifically describe the relation at hand. Additionally,
in retrospect, the structure of the sentences in our data describing such relations
is more complex than for other relations. In order to find more suitable patterns,
the patterns need to be more complex by, for instance, adding more and and
not operators, with the risk of overfitting. Future work should therefore focus on
determining how patterns can be learned from more complex sentences, by for
instance pre-analyzing the rules for often returning concepts and increasing the
probability of appearance for these concepts during initialization and mutation.

The remaining relations, i.e., Loss, Profit, Sales, and ShareValue are all data
properties, meaning they do not require a concept for the object of the relation.
Examples of the data property values are “10.5 million euros”, “$12”, or “53
thousand yen”. In order to match those values one may need a complex pattern,
and hence we decided to use the classification component of Hermes to annotate
currency values as a single token. For example, the string “10.5 million euros”
is annotated with a single annotation, e.g., CurrencyValue, which can be used
in the information extraction rules. This allows us to treat these data properties
in a similar manner as the object properties.

Last, the results for automatic rule generation depicted in Table 2 show that
among the data properties ShareValue achieved the highest F1-value, i.e., 87%,
followed by the Loss relation, which measured an F1-value of 73%. The Profit
and Sales relations performed slightly worse, resulting in F1-measures between
60% and 70%.

Our experiments show that the used fitness function – defined in (1) – is
expensive because the F1-measure has to be calculated for each rule in each
generation of a population, and is heavily dependent on available computing
power. On our machine, using an Intel R© 2.66 GHz Core

TM

i7 920 processor with
6 GB of RAM, jobs finished within 5 hours each. On average, the generation
of a rule group representing a relation takes approximately 4 and a half hours.
The largest amount of time needed for one rule group was 5 hours, whereas the
smallest amount of time required was 3 and a half hours.

We also let a domain expert create rules manually for 5 hours per rule group
on the same machine to ensure a fair comparison of our automatic system with
the manual creation of rules. Again, most time is consumed by evaluating rules,
yet a manual approach is less efficient. Where the genetic programming approach
generates precision, recall, and F1-values of 84%, 61%, and 70%, respectively, on
average, the manually created rule groups show lower performances. For manual
rule creation, the resulting F1-values are on average about 27% lower (displayed
under∆% in the rightmost column of Table 2). Hence, within the same amount of
time (i.e., 5 hours per rule group), a domain expert manually writing rules would
end up with worse performing rules than an automated genetic programming-
based approach. We do not question the potential quality of the rules manually
created by the experts when allowing for more time, yet within the limited
amount of time advantages of automatic generation are clearly shown. We do,
however, observe similar performance patterns as have been described above.

The largest improvements (up to 58%) we observe for relations that involve
data properties that deal with more complex constructions (e.g., using datatype
variants), which are cumbersome for human experts to include in their rules,
hence leading to lower recall. For example, Loss and Profit involve complex
sentences with currencies, which have many different variants in our data set. On
the other hand, rule groups that cover many structurally homogeneous examples
for which the subject and object are concepts having different types, e.g., Product
and CEO, show improvements as low as 12%, as these are straightforward to
implement for domain experts, thus diminishing the need for automation.

For the domain expert, the actual writing took up a few percent of the total
time (5 to 10 minutes). A considerable amount of time was used for reading
news messages, analyzing matched patterns, verifying results, etc. Additionally,
perfecting rules took up increasingly more time, as one needs to abstract away
from the given examples in the training set. When increasing the training set
size, it would become virtually impossible for domain experts to keep up with a
genetic programming-based approach, underlining the added value for automatic
rule generation for detecting complex semantic relations in large data sets.

7 Conclusions

Answering to the need for ontology update languages, in this paper we have
introduced the Hermes Information Extraction Language (HIEL). The language
supports many of the features that exist in regular expressions, such as sequences,

literals, logical operators, repetition, and wildcards. In addition to this, syntactic
and orthographic categories are supported. In order to allow the user to create
generic information extraction rules for a domain we made use of semantic enti-
ties in rules by employing ontological elements, such as classes and instances.

Information extraction rules are often used in automatic information extrac-
tion, yet they are usually manually constructed. We have presented a genetic
programming-based approach for automatically learning these rules from finan-
cial news. Genetic programming approaches provide rules expressed in a user-
understandable way, and usually find adequate solutions within a reasonable
amount of time. In general, our system performs good in terms of recall and pre-
cision, and hence also yields good F1-values of 70% across all considered financial
relations. Our experiments show that compared to information extraction rules
constructed by expert users, we are able to find rules that yield a higher F1-value
(i.e., 27% higher on average) after the same amount of time (i.e., 5 hours). A fre-
quently encountered problem for the genetic programming approach is that the
quality of the initial population is too low, because the probability that the right
concepts are initially chosen becomes smaller as the total number of concepts in
the knowledge base increases.

As future work, we aim to investigate solutions to the aforementioned prob-
lem, e.g., by implementing heuristics and bootstrapping our algorithms. We hy-
pothesize that frequently appearing concepts in a certain domain can be given a
higher probability during initialization to increase the quality of the initial pop-
ulation. Moreover, manually derived rules can be useful when deployed in the
initial population. Also, we plan to extend our evaluation to also include single
rule matching on multiple sentences. Additional directions are extracting other
types of information (from different domains than the financial domain, such as
the political, medical, and weather domains), as well as connecting automatic
rule learning with (semi-)automated ontology updating mechanisms [15] that
process the extracted information and update ontologies accordingly.

Acknowledgment

The authors are partially supported by the NWO Physical Sciences Free Com-
petition project 612.001.009: Financial Events Recognition in News for Algo-
rithmic Trading (FERNAT), the Dutch national program COMMIT, and the
NWO Mozaiek scholarship project 017.007.142: Semantic Web Enhanced Prod-
uct Search (SWEPS).

References

1. Angeline, P.J.: Subtree Crossover: Building Block Engine or Macromutation? In:
2nd Ann. Conf. on Genetic Programming (GP 1997). pp. 9–17. Morgan Kaufmann
(1997)

2. Black, W.J., McNaught, J., Vasilakopoulos, A., Zervanou, K., Theodoulidis, B.,
Rinaldi, F.: CAFETIERE: Conceptual Annotations for Facts, Events, Terms, In-
dividual Entities, and RElations. Technical Report TR–U4.3.1, UMIST (2005)

3. Borg, C., Rosner, M., Pace, G.J.: Automatic Grammar Rule Extraction and Rank-
ing for Definitions. In: 7th Int. Conf. of Language Resources and Evaluation (LREC
2010). European Language Resources Association (2010)

4. Carlson, A., Betteridge, J., Wang, R.C., Hruschka Jr., E.R., Mitchell, T.M.: Cou-
pled Semi-Supervised Learning for Information Extraction. In: 3rd Int. Conf. on
Web Search and Data Mining (WSDM 2010). pp. 101–110. ACM (2010)

5. Castellanos, M., Gupta, C., Wang, S., Dayal, U.: Leveraging Web Streams for Con-
tractual Situational Awareness in Operational BI. In: Int. Workshop on Business
intelligencE and the WEB (BEWEB 2010) in conjunction with EDBT/ICDT 2010
Joint Conf. pp. 1–8. ACM (2010)

6. Chang, C.H., Kayed, M., Girgis, M.R., Shaalan, K.: A Survey of Web Informa-
tion Extraction Systems. IEEE Transactions on Knowledge and Data Engineering
18(10), 1411–1428 (2006)

7. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In: 40th Anniversary Meeting of the Association for Computational Linguistics
(ACL 2002). pp. 168–175. Association for Computational Linguistics (2002)

8. Domingue, J., Motta, E.: PlanetOnto: From News Publishing to Integrated Knowl-
edge Management Support. IEEE Intelligent Systems 15(3), 26–32 (2000)

9. Etzioni, O., Cafarella, M., Downey, D., Popescu, A., Shaked, T., Soderland, S.,
Weld, D.S., Yates, A.: Unsupervised Named-Entity Extraction From The Web: An
Experimental Study. Artificial Intelligence 165(1), 91–134 (2005)

10. Frasincar, F., Borsje, J., Hogenboom, F.: E-Business Applications for Product De-
velopment and Competitive Growth: Emerging Technologies, chap. Personalizing
News Services Using Semantic Web Technologies, pp. 261–289. IGI Global (2011)

11. Hearst, M.A.: Automatic Acquisition of Hyponyms from Large Text Corpora. In:
14th Conf. on Computational Linguistics (COLING 1992). vol. 2, pp. 539–545
(1992)

12. IJntema, W., Sangers, J., Hogenboom, F., Frasincar, F.: A Lexico-Semantic Pattern
Language for Learning Ontology Instances from Text. J. of Web Semantics: Science,
Services and Agents on the World Wide Web 15(1), 37–50 (2012)

13. Jones, T.: Crossover Macromutation and Population-based Search. In: 6th Int.
Conf. on Genetic Algorithms (ICGA 1995). pp. 73–80. Morgan Kaufmann (1995)

14. Maynard, D., Saggion, H., Yankova, M., Bontcheva, K., Peters, W.: Business In-
formation Systems, Lecture Notes in Computer Science, vol. 4439, chap. Natural
Language Technology for Information Integration in Business Intelligence, pp. 366–
380. Springer (2007)

15. Sangers, J., Hogenboom, F., Frasincar, F.: Event-Driven Ontology Updating. In:
13th Int. Conf. on Web Information System Engineering (WISE 2012). Lecture
Notes in Computer Science, vol. 7651, pp. 44–57. Springer (2012)

16. Snow, R., Jurafsky, D., Ng, A.Y.: Learning Syntactic Patterns for Automatic Hy-
pernym Discovery. In: 18th Ann. Conf. on Neural Information Processing Systems
(NIPS 2004). Advances in Neural Information Processing Systems, vol. 17, pp.
1297–1304. MIT Press (2004)

17. Soderland, S.: Learning Information Extraction Rules for Semi-Structured and Free
Text. Machine Learning 34(1–3), 233–272 (1999)

18. Thompson, D.R., Bilbro, G.L.: Comparison of a Genetic Algorithm with a Simu-
lated Annealing Algorithm for the Design of an ATM Network. IEEE Communi-
cations Letters 4(8), 267–269 (2000)

